• Title/Summary/Keyword: VIBRATION

Search Result 25,068, Processing Time 0.047 seconds

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

A Study on Property Distribution of [011] Poled Mn:PIN-PMN-PT Single Crystals Grown by Bridgeman Method (Bridgeman 성장 [011] 분극 Mn:PIN-PMN-PT 압전단결정의 물성 분포 연구)

  • Soohyun Lim;Yub Je;Yohan Cho;Sang-Goo Lee;Hee-Seon Seo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.412-419
    • /
    • 2024
  • Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg2/3Nb1/3)O3-PbTiO3 (Mn:PIN-PMN-PT) single crystals, which exhibit improved phase transition temperatures and coercive field properties compared to Pb(In1/2Nb1/2)O3-Pb(Mg2/3Nb1/3)O3-PbTiO3 (PIN-PMN-PT) single crystals, are expected to be utilized in high-power acoustic transducers. Bridgeman method, growing single crystals along the axial direction from melt, is most widely used method for single crystal growth with large size and high quality. However, single crystal boules grown by the Bridgeman method demonstrate a PT compositional variation, giving rise a distribution of crystal structure and material properties along the growing axis. To employ piezoelectric single crystals grown by the Bridgeman method for acoustic transducers, it is essential to investigate their overall property distribution. In this study, the compositional distribution and property variation of Mn:PIN-PMN-PT single crystals grown by the Bridgeman method was investigated. Measured compositional distribution of PT was from 29% to 32.5% in the Rhombohedral crystal region of the boule. Two types of specimen, [011]-poled Mn:PIN-PMN-29PT and Mn:PIN-PMN-32PT single crystals, were fabricated and tested to obtain full property variation at both ends of the Rhombohedral crystal region. The properties related to the 32 directional vibration mode and the properties related to high-power driving were measured to confirm the overall distribution of properties by composition.

An Experimental Analysis of Ultrasonic Cavitation Effect on Ondol Pipeline Management (온돌 파이프라인 관리를 위한 초음파 캐비테이션 효과에 대한 실험적 분석)

  • Lee, Ung-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • In the context of Korean residential heating systems, Ondol pipelines are a prevalent choice. However, the maintenance of these pipelines becomes a complex task once they are embedded within concrete structures. As time progresses, the accumulation of sludge, corrosive oxides, and microorganisms on the inner surfaces of these pipelines diminishes their heating efficiency. In extreme scenarios, this accumulation can induce corrosion and scale formation, compromising the system's integrity. Consequently, this research introduces an ultrasonic generation system tailored for the upkeep of Ondol pipelines, with the objective of empirically assessing its practicality. This investigation delineates three variants of ultrasonic generating apparatuses: those employing surface vibration, external generation, and internal generation techniques. To emulate the presence of contaminants within the pipelines, substances in powder, slurry, and liquid forms were employed. The efficacy of the cleaning process post-ultrasonic wave application was scrutinized over time, with image analysis methodologies being utilized to evaluate the outcomes. The findings indicate that ultrasonic waves, whether generated externally or internally, exert a beneficial effect on the cleanliness of the pipelines. Given the inherent characteristics of Ondol pipelines, external generation proves impractical, thereby rendering internal generation a more viable solution for pipeline maintenance. It is anticipated that future endeavors will pave the way for innovative maintenance strategies for Ondol pipelines, particularly through the advancement of internal generation technologies for pipeline applications.

Integrated Sensing Module for Environmental Information Acquisition on Construction Site (건설현장 환경정보 수집을 위한 통합 센싱모듈 개발)

  • Moon, Seonghyeon;Lee, Gitaek;Hwang, Jaehyun;Chi, Seokho;Won, Daeyoun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.85-93
    • /
    • 2024
  • The monitoring of environmental information (e.g. noise, dust, vibration, temperature, humidity) is crucial to the safe and sustainable operation of a construction site. However, commercial sensors exhibit certain drawbacks when applied on-site. First, the installation cost is prohibitively high. Second, these sensors have been engineered without considering the rugged and harsh conditions of a construction site, resulting in error-prone sensing. Third, construction sites are compelled to allocate additional resources in terms of manpower, expenses, and physical spaces to accommodate individual sensors. This research developed an integrated sensing module to measure the environmental information in construction site. The sensing module slashes the installation cost to 3.3%, is robust enough to harsh and outdoor sites, and consolidates multiple sensors into a single unit. The sensing module also supports GPS, LTE, and real-time sensing. The evaluation showed remarkable results including 97.5% accuracy and 99.9% precision in noise measurement, an 89.7% accuracy in dust measurement, and a 93.5% reliability in data transmission. This research empowers the collection of substantial volumes and high-quality environmental data from construction sites, providing invaluable support to decision-making process. These encompass objective regulatory compliance checking, simulations of environmental data dispersion, and the development of environmental mitigation strategies.

Natural Frequency Analysis of Sleeper Floating Track System using Modal Test Technique (모달시험기법을 이용한 침목플로팅궤도의 고유진동수 분석)

  • Jung-Youl Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.833-838
    • /
    • 2024
  • The urban railway sleeper floating track(STEDEF) is a structure that structurally separates the sleepers and the concrete bed using sleeper boots and resilience pads to reduce vibration transmitted to the concrete bed. Recently, the resilience pads of sleeper floating tracks that have been in use for more than 20 years are deteriorating. Accordingly, in order to evaluate the performance of the resilience pad, a static spring stiffness test is being performed after extracting the resilience pad. This evaluation technique is performed after replacing the resilience pad in use. However, the track natural frequency can change depending on the resilience pad spring stiffness and the uplift and subsidence of the concrete bed. In this study, modal testing technique was used to evaluate the track natural frequency. For this purpose, the sleeper boots material, resilience pad spring stiffness, and track natural frequency according to concrete bed uplift and subsidence were measured using modal tests at a laboratory scale. It was analyzed that the natural frequency of the sleeper floating track was directly affected by changes in the spring stiffness of the resilience pad. In addition, the change in natural frequency due to the uplift and subsidence of the concrete bed was also found to be large. Therefore, it is believed that the modal test technique presented in this study can be used to evaluate the resilience pad deterioration and voided sleepers.

Analysis of Dynamic Response Characteristics for KTX and EMU High-Speed Trains on PSC-Box Railway Bridges (PSC-box 철도교량의 KTX 및 EMU 고속열차에 대한 동적 응답 특성 분석)

  • Manseok Han;Min-Kyu Song;Soobong Shin;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.61-68
    • /
    • 2024
  • The majority of high-speed railway bridges along the domestic Gyeongbu and Honam lines feature a PSC-box type structure with a span length ranging from 35 to 40m, which typically exhibits a first bending natural frequency of approximately 4 to 5Hz. When KTX high-speed trains transverse these bridges at speeds ranging from 290 to 310km/h, the vibration induced by the trains approaches the first bending natural frequency of the bridge. Furthermore, with the upcoming operation of a EMU-320 high-speed train and the anticipated increase in the speeds of these high-speed trains, there is a need to analyze the dynamic response of high-speed railway bridges. For this, based on measured responses from actual railway bridges, a numerical model was constructed using a numerical model updating technique. The dynamic response of the updated numerical model exhibited a strong agreement with the measured response from the actual railway bridges. Subsequently, this updated model was utilized to analyze the dynamic response characteristics of the bridges when KTX and EMU-320 trains operate at increased speeds. The maximum vertical displacement and acceleration at the mid-span of the bridges were also compared to those specified in the railway design standard with the increasing speed of KTX and EMU-320.

Spontaneous Speech Emotion Recognition Based On Spectrogram With Convolutional Neural Network (CNN 기반 스펙트로그램을 이용한 자유발화 음성감정인식)

  • Guiyoung Son;Soonil Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.284-290
    • /
    • 2024
  • Speech emotion recognition (SER) is a technique that is used to analyze the speaker's voice patterns, including vibration, intensity, and tone, to determine their emotional state. There has been an increase in interest in artificial intelligence (AI) techniques, which are now widely used in medicine, education, industry, and the military. Nevertheless, existing researchers have attained impressive results by utilizing acted-out speech from skilled actors in a controlled environment for various scenarios. In particular, there is a mismatch between acted and spontaneous speech since acted speech includes more explicit emotional expressions than spontaneous speech. For this reason, spontaneous speech-emotion recognition remains a challenging task. This paper aims to conduct emotion recognition and improve performance using spontaneous speech data. To this end, we implement deep learning-based speech emotion recognition using the VGG (Visual Geometry Group) after converting 1-dimensional audio signals into a 2-dimensional spectrogram image. The experimental evaluations are performed on the Korean spontaneous emotional speech database from AI-Hub, consisting of 7 emotions, i.e., joy, love, anger, fear, sadness, surprise, and neutral. As a result, we achieved an average accuracy of 83.5% and 73.0% for adults and young people using a time-frequency 2-dimension spectrogram, respectively. In conclusion, our findings demonstrated that the suggested framework outperformed current state-of-the-art techniques for spontaneous speech and showed a promising performance despite the difficulty in quantifying spontaneous speech emotional expression.

Development of Autonomous Cable Monitoring System of Bridge based on IoT and Domain Knowledge (IoT 및 도메인 지식 기반 교량 케이블 모니터링 자동화 시스템 구축 연구)

  • Jiyoung Min;Young-Soo Park;Tae Rim Park;Yoonseob Kil;Seung-Seop Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.66-73
    • /
    • 2024
  • Stay-cable is one of the most important load carrying members in cable-stayed bridges. Monitoring structural integrity of stay-cables is crucial for evaluating the structural condition of the cable-stayed bridge. For stay-cables, tension and damping ratio are estimated based on modal properties as a measure of structural integrity. Since the monitoring system continuously measures the vibration for the long-term period, data acquisition systems should be stable and power-efficiency as the hardware system. In addition, massive signals from the data acquisition systems are continuously generated, so that automated analysis system should be indispensable. In order to fulfill these purpose simultaneously, this study presents an autonomous cable monitoring system based on domain-knowledge using IoT for continuous cable monitoring systems of cable-stayed bridges. An IoT system was developed to provide effective and power-efficient data acquisition and on-board processing capability for Edge-computing. Automated peak-picking algorithm using domain knowledge was embedded to the IoT system in order to analyze massive data from continuous monitoring automatically and reliably. To evaluate its operational performance in real fields, the developed autonomous monitoring system has been installed on a cable-stayed bridge in Korea. The operational performance are confirmed and validated by comparing with the existing system in terms of data transmission rates, accuracy and efficiency of tension estimation.

Fluid bounding effect on FG cylindrical shell using Hankel's functions of second kind

  • Khaled Mohamed Khedher;Shahzad Ali Chattah;Mohammad Amien Khadimallah;Ikram Ahmad;Muzamal Hussain;Rana Muhammad Akram Muntazir;Mohamed Abdelaziz Salem;Ghulam Murtaza;Faisal Al-Thobiani;Muhammad Naeem Mohsin;Abeera Talib;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.565-577
    • /
    • 2024
  • Vibration investigation of fluid-filled functionally graded cylindrical shells with ring supports is studied here. Shell motion equations are framed first order shell theory due to Sander. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the Rayleigh-Ritz procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Langrange energy functional is converted into a set of three partial differential equations. A cylindrical shell is immersed in a fluid which is a non-viscous one. These shells are stiffened by rings in the tangential direction. For isotropic materials, the physical properties are same everywhere where the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. After these, ring supports are located at various positions along the axial direction round the shell circumferential direction. The influence of the ring supports is investigated at various positions. Effect of ring supports with empty and fluid-filled shell is presented using the Rayleigh - Ritz method with simply supported condition. The frequency behavior is investigated with empty and fluid-filled cylindrical shell with ring supports versus circumferential wave number and axial wave number. Also the variations have been plotted against the locations of ring supports for length-to-radius and height-to-radius ratio. Moreover, frequency pattern is found for the various position of ring supports for empty and fluid-filled cylindrical shell. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down. It is found that due to inducting the fluid term frequency result down than that of empty cylinder. It is also exhibited that the effect of frequencies is investigated by varying the surfaces with stainless steel and nickel as a constituent material. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.

Research on Evaluation of Properties of PA6/PA66/GF Composite according to Injection Pressure and Simulation of Damping Performance (엔진마운트 브라켓용 PA66/GF 복합재료의 특성 평가 및 진동감쇠 성능 시뮬레이션에 대한 연구)

  • Seong-Hun Yu;Hyun-Sung Yun;Dong-Hyun Yeo;Jun-Hee Lee;Jong-Su Park;Jee-hyun Sim
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.59-67
    • /
    • 2024
  • Research was conducted on a PA material-based composite material manufacturing method for application to engine mount brackets. Engine mount brackets must have heat resistance, impact resistance, and damping performance. PA66 resin was used as the base material for the composite material. The glass fiber was used as the reinforcement material. The composite material was manufactured using the injection molding method. The thermal, mechanical, and morphological characteristics were analyzed depending on the content of glass fiber. 3D model was created using the property evaluation database of composite materials(input data). The damping performance of the generated 3D model was extracted as out-put data. The reason for evaluating the characteristics of PA-based composite materials and conducting simulations on the damping performance of 3D models of engine brackets is because product performance can be predicted without manufacturing actual automobile parts and conducting damping performance tests. As a result of the damping simulation, damping performance tended to increase proportionally as the mass fraction of the reinforcement increased. But above a certain level, it no longer increased and slightly decreased. As a result of comparing the actual experimental values a nd the simulated values, the approximate value was within ±5%.