• Title/Summary/Keyword: VIBRATION

Search Result 25,098, Processing Time 0.047 seconds

A Study on the Development of Field Management System for Underground utility using Self-levelling marker and DGPS. (자동수평마커와 DGPS를 이용한 지하시설물의 현장관리시스템 개발에 관한 연구)

  • Kim, In-Seup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.733-739
    • /
    • 2009
  • Recently it is being increased rapidly to install magnetic marker and RFID tag on the underground utility lines before backfilling to ensure effective it's management. However, due to changes an attitude and damages of sensors. By pressure and vibration during soil compacting, detecting rate is significantly reduced as well as it allows to use only one line of various pipes since it has an unique frequency. Also it is required too long time to reach to target point with an non-accurate navigational GPS receiver and hard to update existing data base with a manual input of new data in the field. To improve these problems, the researcher developed the field management system that apply with ball typed self-levelling marker which is free from the changes of attitude for sensors during compaction as well as has various radio frequency applicable to many kind of pipes and ensure fast positioning to target point using an incorporated system with PDA based DGPS receiver which allows loading a field GIS software and RFID detector. Further, it provides with viewing all of RFID data on the DGPS receiver screen directly and also input new data to existing data base in the field automatically.

A Study of Theoretical Methods for Estimating Void Ratio Based on the Elastic Wave Velocities (탄성파 속도를 이용한 간극비 산출 식의 고찰)

  • Lee, Jong-Sub;Park, Chung-Hwa;Yoon, Sung-Min;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.35-45
    • /
    • 2013
  • The void ratio is an important parameter for reflecting the soil behavior including physical property, compressibility, and relative density. The void ratio can be obtained by laboratory test with extracted soil samples. However, the specimen has a possibility to be easily disturbed due to the stress relief when extracting, vibration during transportation, and error in experimental process. Thus, the theoretical equations have been suggested for obtaing the void ratio based on the elastic wave velocities. The objective of this paper is to verify the accuracy of the proposed analytical solution through the error norm. The paper covers the theoretical methods of Wood, Gassmann and Foti. The elastic wave velocity is determined by the Field Velocity Probe in the southern part of Korean Peninsular. And the rest parameters are assumed based on the reference values. The Gassmann method shows the high reliability on determining the void ratio. The error norm is also analyzed as substitution of every parameter. The results show every equation has various characteristics. Thus, this paper may be widely applied for obtaining the void ratio according to the field condition.

Epidemiological and Lumbar x-ray Studies on the Low Back Pain of the Workers in an Automobile Industry (자동차 제조업체 근로자들의 요통에 대한 역학적 요추 x-선학적 고찰)

  • Kim, Soon-Lae
    • Research in Community and Public Health Nursing
    • /
    • v.6 no.2
    • /
    • pp.319-334
    • /
    • 1995
  • To investigate the risk factors of low back pain, an epidemiological study was carried out among male workers aged 20-55 employed in an automobile industry in Korea during the time period from February 1993 to October 1995. Workers participated to this study were divided into low back pain group(LBP) and control group, according to the self-reports by written questionnaires. General characteristics, medical history, work related factors, fatigue, and MMPI were compared between two groups. To clarify the relationship between job related low back pain and radiologic features of lumbar spine, radiographic study was carried out. The resultant data were processed for $x^2-test$, t-test, and stepwise logistic regression to confirm the adjusted odds ratios. The results were as follows: 1. History of back disease, lifting and carrying work, excessive physical fatigue, and weakend back strength of individual workers were directly associated with low back pain. Odd ratios of these 4 risk factors of low back pain were 5.07, 3.34, 1.49, and 1.22 respectively. 2. The frequency of low back pain history was significantly higher in LBP group. 3. Back muscle strength of lumbar spine of LBP group were significantly lower than control group. 4. The workers in LBP group revealed high fatigue symptoms. 5. In MMPI test LBP group showed higher scales in hypochondriasis, depression, hysteria, psychopathic deviate, paranoia, psychasthenia, schizophrenia, and hypomania. 6. LBP group were more frequently involved in lifting and carrying, working in awkward position, bending, twisting and using lower extremities. 7. LBP group were exposed more to vibration during working. 8. In the Analysis of radiographs of lumbar spine, Jacob's line not crossing fourth lumhar disc space, transitional vertebrae and lumbar displacement more than 4.4mm in standing lateral view were more frequently observed in LBP group than control group. Through these results, it is concluded that identification of previous history of back problem, change of work or working environment for workers with previous back problem and measures to relieve both physical and psychological fatigue of the workers are required for optimal management of work-related back problems among workers. In the present study, several results were different from the previous reports: Jacob's line not corssing fourth lumbar disc space, lumbarization, and vertebral slipping (spondylolisthesis) more than 4.4mm are related to backache. Meticulous studies are required to elucidate the difference.

  • PDF

Research on Development of Turbo-generator with Partial Admission Nozzle for Supercritical CO2 Power Generation (부분 유입 노즐을 적용한 초임계 이산화탄소 발전용 초고속 터보발전기 개발 연구)

  • Cho, Junhyun;Shin, Hyung-ki;Kang, Young-Seok;Kim, Byunghui;Lee, Gilbong;Baik, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2017
  • A Sub-kWe small-scale experimental test loop was manufactured to investigate characteristics of the supercritical carbon dioxide power cycle. A high-speed turbo-generator was also designed and manufactured. The designed rotational speed of this turbo-generator was 200,000 rpm. Because of the low expansion ratio through the turbine and low mass flowrate, the rotational speed of the turbo-generator was high. Therefore, it was difficult to select the rotating parts and design the turbine wheel, axial force balance and rotor dynamics in the lab-scale experimental test loop. Using only one channel of the nozzle, the partial admission method was adapted to reduce the rotational speed of the rotor. This was the world's first approach to the supercritical carbon dioxide turbo-generator. A cold-run test using nitrogen gas under an atmospheric condition was conducted to observe the effect of the partial admission nozzle on the rotor dynamics. The vibration level of the rotor was obtained using a gap sensor, and the results showed that the effect of the partial admission nozzle on the rotor dynamics was allowable.

Prediction of Transmission Error Using Dynamic Analysis of a Helical Gear (헬리컬기어의 동적해석을 통한 전달오차 예측)

  • Lee, Jeongseok;Yoon, Moonyoung;Boo, Kwangsuk;Kim, Heungseob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1005-1011
    • /
    • 2016
  • The fundamental reason for gear noise is transmission error. Transmission error occurs because of STE (static transmission error) and DTE (dynamic transmission error), while a pair of gears is meshing. These errors are generated by the deflection of the teeth and the friction on the surface of the teeth. In addition, the vibration generated by transmission error leads to excited bearings. The bearings support the shafts, and the noise is radiated after exciting the gear casing. The analysis of the contact stress in helical gear tooth flanks indicates that it is due to impact loading, such as the sudden engagement and disengagement of a gear. Stress analysis is performed for different roll positions, in order to determine the most critical roll angle. Dynamic analysis is performed on this critical roll position, in order to evaluate variation in stresses and tooth contact force, with respect to time. In this study, transmission error analysis was implemented on a spur and helical gear with involute geometry and a modified geometry profile. In addition, in order to evaluate the intensity of impact due to sudden engagement and significant backlash, the impact factor was calculated using the finite element analysis results of static and dynamic maximum bending stresses.

Study on Analysis of Transfer Torque and Improvement of Transfer Torque in Non-Contact Permanent Magnet Gear (비접촉 영구자석 기어의 전달토크 분석 및 전달토크 향상에 대한 연구)

  • Park, Gyu-Sang;Kim, Chan-Ho;Kim, Yong-Jae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.181-188
    • /
    • 2015
  • The non-contact permanent magnet gear has advantages of high efficiency and improved reliability. It has other advantages of no mechanical friction loss, very little noise and vibration, and no need for lubricant. With these advantages, the non-contact permanent magnet gear that solves the physical contact problem of the mechanical gear has drawn attention. Due to this unique non-contact characteristic, the non-contact permanent magnet gear which is capable of non-contact torque transmission has replaced mechanical gear. The mechanical gears which is in many fields of the modern industry, is used mostly for power transmitting mechanical devices. However, it also has the problem of a low torque density, which requires improvement. In this paper, a novel pole piece shape is proposed in order to improve the problem of low torque density of the non-contact permanent magnet gear. The experiment data required for predicting the relationships among them are obtained using finiteelement Operating method based on two-dimensional (2-D) numerical analysis. Therefore, this paper derived an optimal model for thenon-contact permanent magnet gear with the novel pole piece using the Box-Behnken design, and the validity of the optimal design of the proposed pole piece shape through variance analysis and regression analysis demonstrated. In this paper, we performed the thransfer torque analysis in order to improve the torque density and power density, we have performed on optimal design of proposed pole piece shape using box-behnken.

Highly Reliable Fault Detection and Classification Algorithm for Induction Motors (유도전동기를 위한 고 신뢰성 고장 검출 및 분류 알고리즘 연구)

  • Hwang, Chul-Hee;Kang, Myeong-Su;Jung, Yong-Bum;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.147-156
    • /
    • 2011
  • This paper proposes a 3-stage (preprocessing, feature extraction, and classification) fault detection and classification algorithm for induction motors. In the first stage, a low-pass filter is used to remove noise components in the fault signal. In the second stage, a discrete cosine transform (DCT) and a statistical method are used to extract features of the fault signal. Finally, a back propagation neural network (BPNN) method is applied to classify the fault signal. To evaluate the performance of the proposed algorithm, we used one second long normal/abnormal vibration signals of an induction motor sampled at 8kHz. Experimental results showed that the proposed algorithm achieves about 100% accuracy in fault classification, and it provides 50% improved accuracy when compared to the existing fault detection algorithm using a cross-covariance method. In a real-world data acquisition environment, unnecessary noise components are usually included to the real signal. Thus, we conducted an additional simulation to evaluate how well the proposed algorithm classifies the fault signals in a circumstance where a white Gaussian noise is inserted into the fault signals. The simulation results showed that the proposed algorithm achieves over 98% accuracy in fault classification. Moreover, we developed a testbed system including a TI's DSP (digital signal processor) to implement and verify the functionality of the proposed algorithm.

Applicability Analysis of Foundation Reinforcement Method for Expanding Underground Parking Lot Using AHP Technique (AHP기법을 활용한 지하주차장 기초보강공법의 적용성 분석)

  • Shin, Myeong-Ha;Lee, Chansik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.93-101
    • /
    • 2017
  • The shortage of parking lots in aged apartment complexes built from the 1980s to the mid 1990s is serious. When we look at the case of parking lot expansion in the aged apartment complexes, the method of extending the underground parking lot vertically occupies the majority. It is very important to secure the structural safety of the foundations when the existing buildings are enlarged. In the case of underground vertical work, the work space should be narrow, so that a method with excellent safety, environmental and construction properties should be applied. Urban construction is also required to use construction methods and equipment with low noise and vibration. This study analyzed the factors influencing the selection of the foundation reinforcement method for the expansion of the underground parking lot and Weights of influence factors were calculated. The purpose of this study was to analyze the applicability of the foundation reinforcement method. Factors influencing the applicability of the foundation reinforcement method were derived through expert interviews and The AHP technique was used to calculate the weight of the influencing factors. It was evaluated by experts on the applicability of the foundation reinforcement method. It conducted a case study on two types of underground parking lot expansion type and compared the applicability of the foundation reinforcement method.

The study of a practical modeling method for the analysis of dynamic behavior by the mockup test of prestressed concrete girder (PSC I형 거더 실물 모형체 실험을 통한 동적거동특성 분석의 실용적 모델링 기법 연구)

  • Kim, Hyung-Kyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.148-156
    • /
    • 2018
  • The integrity assessment of the bridge behavior is generalized by field data of a static load-deformation curve and dynamic properties such as impact factors and natural frequencies. Evaluating it with numerical analysis is a reasonable method. The results of the mockup test and the numerical analysis are corresponded with each other since the behavior of service load proceeds in elastic region. In case of the dynamic behavior of structure, especially for the analysis of vibration, the result of the mockup test differs from the result of numerical analysis a little due to the geometric shape and non-homogeneous materials. In order to converge on these tolerances, this study suggested several numerical models, analyzed the sensitivity and finally offered a practical modeling method for the estimation of bridge on the basis of the result of mockup test. Based on the model substituted concrete section for strands section, the natural frequency of the model composed with axial stiffness of strands or the model applied the modified modulus of elasticity was closest with the result of the mockup test.

Study on frequency response of implantable microphone and vibrating transducer for the gain compensation of implantable middle ear hearing aid (이식형 마이크로폰과 진동체를 갖는 인공중이의 이득 보상을 위한 주파수 특성 고찰)

  • Jung, Eui-Sung;Seong, Ki-Woong;Lim, Hyung-Gyu;Lee, Jang-Woo;Kim, Dong-Wook;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.361-368
    • /
    • 2010
  • ACROSS device, which is composed of an implantable microphone, a signal processor, and a vibrating transducer, is a fullyimplantable middle ear hearing device(F-IMEHD) for the recovery of patients with hearing loss. And since a microphone is implanted under skin and tissue at the temporal bones, the amplitude of the sound wave is attenuated by absorption and scattering. And the vibrating transducer attached to the ossicular chain caused also the different displacement from characteristic of the stapes. For the gain control of auditory signals, most of implantable hearing devices with the digital audio signal processor still apply to fitting rules of conventional hearing aid without regard to the effect of the implanted microphone and the vibrating transducer. So it should be taken into account the effect of the implantable microphone and the vibrating transducer to use the conventional audio fitting rule. The aim of this study was to measure gain characteristics caused by the implanted microphone and the vibrating transducer attached to the ossicle chains for the gain compensation of ACROSS device. Differential floating mass transducers (DFMT) of ACROSS device were clipped on four cadaver temporal bones. And after placing the DFMT on them, displacements of the ossicle chain with the DFMT operated by 1 $mA_{peak}$ current was measured using laser Doppler vibrometer. And the sensitivity of microphones under the sampled pig skin and the skin of 3 rat back were measured by stimulus of pure tones in frequency from 0.1 to 8.9 kHz. And we confirmed that the microphone implanted under skin showed poorer frequency response in the acoustic high-frequency band than it in the low- to mid- frequency band, and the resonant frequency of the stapes vibration was changed by attaching the DFMT on the incus, the displacement of the DFMT driven with 1 $mA_{rms}$ was higher by the amount of about 20 dB than that of cadaver's stapes driven by the sound presssure of 94 dB SPL in resonance frequency range.