• Title/Summary/Keyword: VGT

Search Result 37, Processing Time 0.022 seconds

Compare Efficiency and Characteristics according to the WGT and VGT Application on the Off-road Engines (Off-road 엔진에서 WGT와 VGT장착에 따른 효율 및 특성 비교)

  • Shin, Jaesik;kang, Jungho;Ha, Hyeongsoo;Jung, Haksup;Pyo, Sukang
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • The aim of this study is to compare the effectiveness of turbo chargers on engines for off-road use when combined with WGT and VGT technologies. The effectiveness of turbo chargers was measured and performance was compared using a functional model. Exhaust characteristics were compared using WGT and VGT technologies through a gas analyzer. Results showed VGT technology was more effective at high RPM compared to WGT technology. When it came to maximising turbo performance, VGT was more effective than WGT in every test. WGT and VGT produced similar exhaust NOx levels, whereas the VGT was more effective on the PM.

Effects of VGT on Part Load Performance of Diesel Engine (VGT가 디젤엔진의 부분부하 성능에 미치는 영향)

  • Choi, Kwon Sick;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.680-686
    • /
    • 2004
  • Recently, the application of variable geometry turbocharger (VGT) to the high speed direct injection (HSDI) diesel engine has gained more and more interest in automotive industry. A steady state experimental investigation has been undertaken on a 1.5L HSDI diesel engine to verify the benefits of VGT comparing to the standard engine having a waste gate turbocharger (WGT). Specifically, part load performances (e.g., fuel economy and emission) have been investigated under various vane angles of the VGT. The results show that the real exhaust gas recirculation (EGR) rate as well as the pumping loss is very important to improve break specific fuel consumption (BSFC). It was previously known that the pumping loss only is a main parameter. In addition, the trade-off relationship between BSFC and NOx according to boost pressure, and the decreasing tendency of NOx with increasing real EGR rate have been verified. 1-D numerical analysis also has been performed, and the numerical results are in good agreement with experimental results.

  • PDF

The Effect of Control of the VGT and EGR in a Turbocharged Common-Rail Diesel Engine on Emissions under Partial Loads Conditions (부분부하에서 커먼레일 과급 디젤엔진의 VGT와 EGR 제어가 배출물에 미치는 영향)

  • Jeong, Soo-Jin;Chung, Jae-Woo;Kang, Jeong-Ho;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.151-158
    • /
    • 2007
  • The static and dynamic behaviour of VGT and EGR systems has a significant impact on overall engine performance, fuel economy and exhaust emissions. This is because they define the state and composition of the air charge entering the engine. This work focused on the effect of the aperture ratio of VGT and EGR on the emission and flow characteristics under partial loads conditions. The investigation carried out using 2 liter PCCI 4 cylinder diesel engine with VGT and EGR. The result of this study shows that smoke increases with increasing EGR rate and NOx decreases with increasing EGR rate. It was also found that the residual gas contents greatly impact on soot emission under partial load condition. Finally, it can be concluded that VGT and EGR aperture ratio can greatly impact not only on soot and NOx but also air charging.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

Experimental study on the performance of a turbocompound diesel engine with variable geometry turbocharger

  • Yin, Yong;Liu, Zhengbai;Zhuge, Weilin;Zhao, Rongchao;Zhao, Yanting;Chen, Zhen;Mi, Jiao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.332-337
    • /
    • 2016
  • Turbocompounding is a key technology to satisfy the future requirements of diesel engine's fuel economy and emission reduction. A turbocompound diesel engine was developed based on a conventional 11-Liter heavy-duty diesel engine. The turbocompound system includes a power turbine, which is installed downstream of a Variable Geometry Turbocharger (VGT) turbine. The impacts of the VGT rack position on the turbocompound engine performance were studied. An optimal VGT control strategy was determined. Experimental results show that the turbocompound engine using the optimal VGT control strategy achieves better performance than the original engine under all full load operation conditions. The averaged and maximum reductions of the brake specific fuel consumption (BSFC) are 3% and 8% respectively.

Dynamic Decoupler Design for EGR and VGT Systems in Passenger Car Diesel Engines (승용디젤엔진 EGR 및 VGT 제어시스템의 동적특성을 고려한 Decoupler 설계 연구)

  • Hong, Seungwoo;Park, Inseok;Sohn, Jeongwon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.182-189
    • /
    • 2014
  • This paper proposes a decoupler design method to reduce interaction between exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems in passenger car diesel engines. The EGR valve and VGT vane are respectively used to control air-to-fuel ratio (AFR) of exhaust gas and intake pressure. A plant model for EGR and VGT systems is defined by a first order transfer function plus time-delay model, and the loop interaction between these systems is analyzed using a relative normalized gain array (RNGA) method. In order to deal with the loop interaction, a design method for simplified decoupler is applied to this study. Feedback control algorithms for AFR and intake pressure are composed of a compensator using PID control method and a prefilter. The proposed decoupler is evaluated through engine experiment, and the results successfully showed that the loop interaction between EGR and VGT systems can be reduced by using the proposed decoupler. Furthermore, it presents stable performance even off from the designed operating point.

An Evaluation of Emission Characteristics and Fuel Consumption on the Off-road Diesel Engine using VGT and EGR (Off-road용 디젤엔진에서의 VGT 및 EGR 적용에 따른 엔진 배기 및 연비 특성 평가)

  • Ha, Hyeongsoo;Shin, Jaesik;Jung, Haksup;Pyo, Sukang;Kang, Jungho
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • To meet the Tier-4 emission standard, a variety of combustion technology in the field of off-road engine has been applied in conjunction with the engine after treatment technology. In this study, as the basis study for applying VGT and HPL EGR to 3.6 L CRDi engine, exhaust gas characteristics and fuel economy characteristics are confirmed in accordance with VGT and EGR operating conditions. Consequently, in the EGR applicable conditions, 60% VGT vane duty condition was confirmed that the trade-off characteristics between NOx and smoke are advantageous. In addition, in view of BSFC, VGT vane duty is considered desirable to control at around 50%.

Nonlinear Static Model-based Feedforward Control Algorithm for the EGR and VGT Systems of Passenger Car Diesel Engines (승용디젤엔진의 EGR, VGT 시스템을 위한 비선형 정적 모델 기반 피드포워드 제어 알고리즘 설계)

  • Park, Inseok;Park, Yeongseop;Hong, Seungwoo;Chung, Jaesung;Sohn, Jeongwon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.135-146
    • /
    • 2013
  • This paper presents a feedforward control algorithm for the EGR and VGT systems of passenger car diesel engines. The air-to-fuel ratio and boost pressure are selected as control indicators and the positions of EGR valve and VGT vane are used as control inputs of the EGR and VGT controller. In order to compensate the non-linearity and coupled dynamics of the EGR and VGT systems, we have proposed a non-linear model-based feedforward control algorithm which is obtained from static model inversion approach. It is observed that the average modeling errors of the feedforward algorithm is about 2% using stationary engine experiment data of 225 operating conditions. Using a feedback controller including proportional-integral, the modeling error is compensated. Furthermore, it is validated that the proposed feedforward algorithm generates physically acceptable trajectories of the actuator and successfully tracks the desired values through engine experiments.

Coordinated Control of EGR and VGT in the Diesel Engine (승용 디젤엔진에서 EGR과 VGT의 공동 제어)

  • Huh, Jun-Young;Chung, Jin-Eun;Jin, Young-Wook;Kang, Woo;Chung, Jae-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.159-164
    • /
    • 2008
  • In diesel engine technology the drive to reduce emissions and fuel consumption with improved performance targets has led to many advances. In particular, Exhaust Gas Recirculation (EGR) and Variable Geometry Turbocharger (VGT) have played a key role in achieving these aims by permitting flexible control of the engine inlet gas charge. The full potential of these devices are difficult to achieve due to limitations in the classical control methods. However, fuzzy logic is particularly appealing due to its simple heuristic nature. The controller used in this work was designed using the Matlab Fuzzy Logic Toolbox. The overall object is to access the potential for emissions and fuel consumption reductions during transient events whilst maintaining and even improving driveability. Classical control methods (PID), as used on production engines, are examined and contrasted with an coordinated control that utilizes fuzzy logic.

Retrieval of background surface reflectance with pre-running BRD components

  • Choi, Sungwon;Lee, Chang Suk;Seo, Minji;Seong, Noh-hun;Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.61-65
    • /
    • 2016
  • Importance of remote sensing for surface is increased than past. So many countries try to many ways to retrieve surface reflectance. In this study, we study a Bidirectional Reflectance Distribution Function (BRDF) to retrieve surface reflectance. We apply BRDF using observed surface reflectance of SPOT/VEGETATION (VGT-S1) and angular data to get Bidirectional Reflectance Distribution (BRD) coefficients for calculating scattering. And then we apply BRDF in the opposite direction with BRD coefficients and angular data to retrieve Background Surface Reflectance (BSR). The range of BSR is not over $0.4{\mu}m$ (blue), $0.45{\mu}m$ (red), $0.55{\mu}m$ (NIR). And for validation we compare BSR with VGT-S1, there are bias is from 0.0116 to 0.0158 and RMSE is from 0.0459 to 0.0545. As a result, we confirm that BSR is similar to VGT-S1.