• 제목/요약/키워드: VGG-16

검색결과 123건 처리시간 0.022초

PET-CT 영상 알츠하이머 분류에서 유전 알고리즘 이용한 심층학습 모델 최적화 (Optimization of Deep Learning Model Using Genetic Algorithm in PET-CT Image Alzheimer's Classification)

  • 이상협;강도영;송종관;박장식
    • 한국멀티미디어학회논문지
    • /
    • 제23권9호
    • /
    • pp.1129-1138
    • /
    • 2020
  • The performance of convolutional deep learning networks is generally determined according to parameters of target dataset, structure of network, convolution kernel, activation function, and optimization algorithm. In this paper, a genetic algorithm is used to select the appropriate deep learning model and parameters for Alzheimer's classification and to compare the learning results with preliminary experiment. We compare and analyze the Alzheimer's disease classification performance of VGG-16, GoogLeNet, and ResNet to select an effective network for detecting AD and MCI. The simulation results show that the network structure is ResNet, the activation function is ReLU, the optimization algorithm is Adam, and the convolution kernel has a 3-dilated convolution filter for the accuracy of dementia medical images.

임베디드 보드에서의 인공신경망 압축을 이용한 CNN 모델의 가속 및 성능 검증 (Acceleration of CNN Model Using Neural Network Compression and its Performance Evaluation on Embedded Boards)

  • 문현철;이호영;김재곤
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.44-45
    • /
    • 2019
  • 최근 CNN 등 인공신경망은 최근 이미지 분류, 객체 인식, 자연어 처리 등 다양한 분야에서 뛰어난 성능을 보이고 있다. 그러나, 대부분의 분야에서 보다 더 높은 성능을 얻기 위해 사용한 인공신경망 모델들은 파라미터 수 및 연산량 등이 방대하여, 모바일 및 IoT 디바이스 같은 연산량이나 메모리가 제한된 환경에서 추론하기에는 제한적이다. 따라서 연산량 및 모델 파라미터 수를 압축하기 위한 딥러닝 경량화 알고리즘이 연구되고 있다. 본 논문에서는 임베디트 보드에서의 압축된 CNN 모델의 성능을 검증한다. 인공지능 지원 맞춤형 칩인 QCS605 를 내장한 임베디드 보드에서 카메라로 입력한 영상에 대해서 원 CNN 모델과 압축된 CNN 모델의 분류 성능과 동작속도 비교 분석한다. 본 논문의 실험에서는 CNN 모델로 MobileNetV2, VGG16 을 사용했으며, 주어진 모델에서 가지치기(pruning) 기법, 양자화, 행렬 분해 등의 인공신경망 압축 기술을 적용하였을 때 원래의 모델 대비 추론 시간 및 분류의 정확도 성능을 분석하고 인공신경망 압축 기술의 유용성을 확인하였다.

  • PDF

결절성 폐암 검출을 위한 상용 및 맞춤형 CNN의 성능 비교 (Performance Comparison of Commercial and Customized CNN for Detection in Nodular Lung Cancer)

  • 박성욱;김승현;임수창;김도연
    • 한국멀티미디어학회논문지
    • /
    • 제23권6호
    • /
    • pp.729-737
    • /
    • 2020
  • Screening with low-dose spiral computed tomography (LDCT) has been shown to reduce lung cancer mortality by about 20% when compared to standard chest radiography. One of the problems arising from screening programs is that large amounts of CT image data must be interpreted by radiologists. To solve this problem, automated detection of pulmonary nodules is necessary; however, this is a challenging task because of the high number of false positive results. Here we demonstrate detection of pulmonary nodules using six off-the-shelf convolutional neural network (CNN) models after modification of the input/output layers and end-to-end training based on publicly databases for comparative evaluation. We used the well-known CNN models, LeNet-5, VGG-16, GoogLeNet Inception V3, ResNet-152, DensNet-201, and NASNet. Most of the CNN models provided superior results to those of obtained using customized CNN models. It is more desirable to modify the proven off-the-shelf network model than to customize the network model to detect the pulmonary nodules.

A Comparative Study of Alzheimer's Disease Classification using Multiple Transfer Learning Models

  • Prakash, Deekshitha;Madusanka, Nuwan;Bhattacharjee, Subrata;Park, Hyeon-Gyun;Kim, Cho-Hee;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.209-216
    • /
    • 2019
  • Over the past decade, researchers were able to solve complex medical problems as well as acquire deeper understanding of entire issue due to the availability of machine learning techniques, particularly predictive algorithms and automatic recognition of patterns in medical imaging. In this study, a technique called transfer learning has been utilized to classify Magnetic Resonance (MR) images by a pre-trained Convolutional Neural Network (CNN). Rather than training an entire model from scratch, transfer learning approach uses the CNN model by fine-tuning them, to classify MR images into Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal control (NC). The performance of this method has been evaluated over Alzheimer's Disease Neuroimaging (ADNI) dataset by changing the learning rate of the model. Moreover, in this study, in order to demonstrate the transfer learning approach we utilize different pre-trained deep learning models such as GoogLeNet, VGG-16, AlexNet and ResNet-18, and compare their efficiency to classify AD. The overall classification accuracy resulted by GoogLeNet for training and testing was 99.84% and 98.25% respectively, which was exceptionally more than other models training and testing accuracies.

딥러닝 기반 주름 평가 (Rating wrinkled skin using deep learning)

  • 김진숙;김용남;김두홍;박래정;백지훈;강상구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.637-640
    • /
    • 2018
  • The paper proposes a new deep network-based model that rates periorbital wrinkles in order to alleviate the shortcomings of the evaluation by human experts as well as to facilitate the automation. Periorbital wrinkles still need to be classified by human experts. Furthermore, the classification results from experts are different from each other in many cases due to the inter-interpreter variability and the absence of quantification criteria. Unlike existing classification methods which classify original images, the proposed model consists of a cascade of two deep networks: U-Net for the enhancement of wrinkles on an input image and VGG16 for final classification based on the wrinkle information. Experiments of the proposed model are made with a data set that consists of 433 images rated by experts, showing the promising performance.

영상 기반 강아지의 이상 행동 탐지 (Camera-based Dog Unwanted Behavior Detection)

  • 오스만;이종욱;박대희;정용화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.419-422
    • /
    • 2019
  • The recent increase in single-person households and family income has led to an increase in the number of pet owners. However, due to the owners' difficulty to communicate with them for 24 hours, pets, and especially dogs, tend to display unwanted behavior that can be harmful to themselves and their environment when left alone. Therefore, detecting those behaviors when the owner is absent is necessary to suppress them and prevent any damage. In this paper, we propose a camera-based system that detects a set of normal and unwanted behaviors using deep learning algorithms to monitor dogs when left alone at home. The frames collected from the camera are arranged into sequences of RGB frames and their corresponding optical flow sequences, and then features are extracted from each data flow using pre-trained VGG-16 models. The extracted features from each sequence are concatenated and input to a bi-directional LSTM network that classifies the dog action into one of the targeted classes. The experimental results show that our method achieves a good performance exceeding 0.9 in precision, recall and f-1 score.

Wood Classification of Japanese Fagaceae using Partial Sample Area and Convolutional Neural Networks

  • FATHURAHMAN, Taufik;GUNAWAN, P.H.;PRAKASA, Esa;SUGIYAMA, Junji
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권5호
    • /
    • pp.491-503
    • /
    • 2021
  • Wood identification is regularly performed by observing the wood anatomy, such as colour, texture, fibre direction, and other characteristics. The manual process, however, could be time consuming, especially when identification work is required at high quantity. Considering this condition, a convolutional neural networks (CNN)-based program is applied to improve the image classification results. The research focuses on the algorithm accuracy and efficiency in dealing with the dataset limitations. For this, it is proposed to do the sample selection process or only take a small portion of the existing image. Still, it can be expected to represent the overall picture to maintain and improve the generalisation capabilities of the CNN method in the classification stages. The experiments yielded an incredible F1 score average up to 93.4% for medium sample area sizes (200 × 200 pixels) on each CNN architecture (VGG16, ResNet50, MobileNet, DenseNet121, and Xception based). Whereas DenseNet121-based architecture was found to be the best architecture in maintaining the generalisation of its model for each sample area size (100, 200, and 300 pixels). The experimental results showed that the proposed algorithm can be an accurate and reliable solution.

1-D PE 어레이로 컨볼루션 연산을 수행하는 저전력 DCNN 가속기 (Power-Efficient DCNN Accelerator Mapping Convolutional Operation with 1-D PE Array)

  • 이정혁;한상욱;최승원
    • 디지털산업정보학회논문지
    • /
    • 제18권2호
    • /
    • pp.17-26
    • /
    • 2022
  • In this paper, we propose a novel method of performing convolutional operations on a 2-D Processing Element(PE) array. The conventional method [1] of mapping the convolutional operation using the 2-D PE array lacks flexibility and provides low utilization of PEs. However, by mapping a convolutional operation from a 2-D PE array to a 1-D PE array, the proposed method can increase the number and utilization of active PEs. Consequently, the throughput of the proposed Deep Convolutional Neural Network(DCNN) accelerator can be increased significantly. Furthermore, the power consumption for the transmission of weights between PEs can be saved. Based on the simulation results, the performance of the proposed method provides approximately 4.55%, 13.7%, and 2.27% throughput gains for each of the convolutional layers of AlexNet, VGG16, and ResNet50 using the DCNN accelerator with a (weights size) x (output data size) 2-D PE array compared to the conventional method. Additionally the proposed method provides approximately 63.21%, 52.46%, and 39.23% power savings.

웨이블릿 영역에서 회전 불변 에너지 특징을 이용한 이중 브랜치 복사-이동 조작 검출 네트워크 (Dual Branched Copy-Move Forgery Detection Network Using Rotation Invariant Energy in Wavelet Domain)

  • 박준영;이상인;엄일규
    • 대한임베디드공학회논문지
    • /
    • 제17권6호
    • /
    • pp.309-317
    • /
    • 2022
  • In this paper, we propose a machine learning-based copy-move forgery detection network with dual branches. Because the rotation or scaling operation is frequently involved in copy-move forger, the conventional convolutional neural network is not effectively applied in detecting copy-move tampering. Therefore, we divide the input into rotation-invariant and scaling-invariant features based on the wavelet coefficients. Each of the features is input to different branches having the same structure, and is fused in the combination module. Each branch comprises feature extraction, correlation, and mask decoder modules. In the proposed network, VGG16 is used for the feature extraction module. To check similarity of features generated by the feature extraction module, the conventional correlation module used. Finally, the mask decoder model is applied to develop a pixel-level localization map. We perform experiments on test dataset and compare the proposed method with state-of-the-art tampering localization methods. The results demonstrate that the proposed scheme outperforms the existing approaches.

Breast Cancer Detection with Thermal Images and using Deep Learning

  • Amit Sarode;Vibha Bora
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.91-94
    • /
    • 2023
  • According to most experts and health workers, a living creature's body heat is little understood and crucial in the identification of disorders. Doctors in ancient medicine used wet mud or slurry clay to heal patients. When either of these progressed throughout the body, the area that dried up first was called the infected part. Today, thermal cameras that generate images with electromagnetic frequencies can be used to accomplish this. Thermography can detect swelling and clot areas that predict cancer without the need for harmful radiation and irritational touch. It has a significant benefit in medical testing because it can be utilized before any observable symptoms appear. In this work, machine learning (ML) is defined as statistical approaches that enable software systems to learn from data without having to be explicitly coded. By taking note of these heat scans of breasts and pinpointing suspected places where a doctor needs to conduct additional investigation, ML can assist in this endeavor. Thermal imaging is a more cost-effective alternative to other approaches that require specialized equipment, allowing machines to deliver a more convenient and effective approach to doctors.