• Title/Summary/Keyword: VFX Simulation

Search Result 6, Processing Time 0.017 seconds

Interactive VFX System for TV Virtual Studio (TV 가상 스튜디오용 인터랙티브 VFX 시스템)

  • Byun, Hae Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.21-27
    • /
    • 2015
  • In this paper, we presents visual effect(water, fire, smoke) simulation and interaction system for TV virtual studio. TV virtual studio seamlessly synthesizes CG background and a live performer standing on a TV green studio. Previous virtual studios focus on the registration of CG background and a performer in real world. In contrast to the previous systems, we can afford to make new types of TV scenes more easily by simulating interactive visual effects according to a performer. This requires the extraction of the performer motion to be transformed 3D vector field and simulate fluids by applying the vector field to Navier Stokes equation. To add realism to water VFX simulation and interaction, we also simulate the dynamic behavior of splashing fluids on the water surface. To provide real-time recording of TV programs, real-time VFX simulation and interaction is presented through a GPU programming. Experimental results show this system can be used practically for realizing water, fire, smoke VFX simulation and the dynamic behavior simulation of fish flocks inside ocean.

Fluid Simulation Control for Effective VFX Underwater Explosion Effects (효과적인 VFX 수중 폭발효과 구현을 위한 유체 시뮬레이션 제어)

  • Hwang, Min Sik;Lee, Hyunseok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1606-1618
    • /
    • 2017
  • The explosion effect of computer graphics Visual Effects(VFX) used in films and animations is an important element that determines the completeness of the film, and its usage is getting extended. The realistic explosion effect of VFX should be made according to observations and analysis of various factors of actual explosion in real world. This experimental research would suggest the efficient production guideline for the technical characteristics of underwater explosion of VFX. For this research process, first, the comparison of actual explosion and VFX explosion effect, classification of actual explosion, and characteristics of underwater explosion effect will be addressed. Second, based on the literature reviews, the four steps of experimental production analysis tool will be derived. Third, the experimental research will be processed in along with technical factors four steps of the underwater explosion effect, (1)realistic creation and emission of fluid, (2)fluid expansion control by water pressure, (3)bubble effect, and (4)motion of bubble & dissipation of fluid. The effective method of fluid simulation production will be verified through experimental studies based on the characteristics of the actual explosion process. This experimental study suggested the VFX production technique is expected to be used as the basic data for related research field.

A Study of Facial Expression of Digital Character with Muscle Simulation System

  • He, Yangyang;Choi, Chul-young
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.162-169
    • /
    • 2019
  • Facial rigging technology has been developing more and more since the 21st century. Facial rigging of various methods is still attempted and a technique of capturing the geometry in real time recently also appears. Currently Modern CG is produced image which is hard to distinguish from actual photograph. However, this kind of technology still requires a lot of equipment and cost. The purpose of this study is to perform facial rigging using muscle simulation instead of using such equipment. Original muscle simulations were made primarily for use in the body of a creature. In this study, however, we use muscle simulations for facial rigging to create a more realistic creature-like effect. To do this, we used Ziva Dynamics' Ziva VFX muscle simulation software. We also develop a method to overcome the disadvantages of muscle simulation. Muscle simulation can not be applied in real time and it takes time to simulate. It also takes a long time to work because the complex muscles must be connected. Our study have solved this problem using blendshape and we want to show you how to apply our method to face rig.

An Adaptive FLIP-Levelset Hybrid Method for Efficient Fluid Simulation (효율적인 유체 시뮬레이션을 위한 FLIP과 레벨셋의 적응형 혼합 기법)

  • Lim, Jae-Gwang;Kim, Bong-Jun;Hong, Jeong-Mo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.3
    • /
    • pp.1-11
    • /
    • 2013
  • Fluid Implicit Particle (FLIP) method is used in Visual Effect(VFX) industries frequently because FLIP based simulation show high performance with good visual quality. However in large-scale fluid simulations, the efficiency of FLIP method is low because it requires many particles to represent large volume of water. In this papers, we propose a novel hybrid method of simulating fluids to supplement this drawback. To improve the performance of the FLIP method by reducing the number of particles, particles are deployed inside thin layers of the inner surface of water volume only. The coupling between less-disspative solutions of FLIP method and viscosity solution of level set method is achieved by introducing a new surface reconstruction method motivated by surface reconstruction method[1] and moving least squares(MLS) method[2]. Our hybrid method can generate high quality of water simulations efficiently with various multiscale features.

B-spline Volume BRDF Representation and Application in Physically-based Rendering (물리기반 렌더링에서의 비스플라인 볼륨 BRDF 표현과 응용)

  • Lee, Joo-Haeng;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.469-477
    • /
    • 2008
  • Physically-based rendering is an image synthesis technique based on simulation of physical interactions between light and surface materials. Since generated images are highly photorealistic, physically-based rendering has become an indispensable tool in advanced design visualization for manufacturing and architecture as well as in film VFX and animations. Especially, BRDF (bidirectional reflectance distribution function) is critical in realistic visualization of materials since it models how an incoming light is reflected on the surface in terms of intensity and outgoing angles. In this paper, we introduce techniques to represent BRDF as B-spline volumes and to utilize them in physically-based rendering. We show that B-spline volume BRDF (BVB) representation is suitable for measured BRDFs due to its compact size without quality loss in rendering. Moreover, various CAGD techniques can be applied to B-spline volume BRDFs for further controls such as refinement and blending.

A Case Study of Fluid Simulation in the Film 'Sector 7' (사례연구: 영화 '7광구'의 유체 시뮬레이션)

  • Kim, Sun-Tae;Lee, Jeong-Hyun;Kim, Dae-yeong;Park, Yeong-Su;Jang, Seong-Ho;Hong, Jeong-Mo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.3
    • /
    • pp.17-27
    • /
    • 2012
  • In this paper, we describe a case study of the film 'Sector 7' which was produced by technologies applied fluid simulation. For the CG scenes in the movie which include highly detailed fluid motions, we used smoothed particle hydrodynamics(SPH) technique to express subtle movements of seawater from a crashed huge tank, and used hybrid simulation method of particles and levelsets to describe bursting water from a submarine's broken canopy. We also used detonation shock dynamics(DSD) technique for detailed flame simulations to produce a burning monster, the film"s main character. At this point, the divergence-free vortex particle method was applied to conserve the incompressible property of fluids. In addition, we used an upsampling method to achieve more efficient video production. Consequently, we could produce the high-quality visual effects by using the domestic technologies.