• Title/Summary/Keyword: VELOCITY

Search Result 23,275, Processing Time 0.049 seconds

A Study on Development of Sway Velocity Reference Model During Auto-berthing/Unberthing Through Analysis of Ship's Berthing/Unberthing Data (선박의 이/접안 데이터 분석을 통한 자동 이/접안 시 횡방향속도 참조모형 개발에 관한 연구)

  • Kim, Jung-Hyeon;Jo, Hyun-Jae;Kim, Su-Rim;Lee, Jun-Ho;Park, Jong-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.358-365
    • /
    • 2021
  • Crabbing motion is a pure sway motion with only sway velocity. The ship's crabbing motion is essential for an ideal berthing/unberthing process. The unberthing situation proceeds in sequential order such as crabbing motion section, pivoting section, and outer port section. For the berthing situation, the sequence has a reverse order: the inner port section, pivoting section, and crabbing motion section. In this paper, the berthing/unberthing data of the reference ship, Pukyong National University research ship "NARA", was analyzed to develop a sway velocity reference model. Several constraints were defined to derive the crabbing motion section during berthing/unberthing. The sway velocity reference model for the auto-berthing/unberthing was developed using the estimated sway velocity. A reproduction simulation of the ship was performed to compare the designed reference model and the reference ship data.

Advanced Evacuation Analysis for Passenger Ship Using Penalty Walking Velocity Algorithm for Obstacle Avoid (장애물 회피에 페널티 보행 속도 알고리즘을 적용한 여객선 승객 탈출 시뮬레이션)

  • Park, Kwang-Phil;Ha, Sol;Cho, Yoon-Ok;Lee, Kyu-Yeul
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper, advanced evacuation analysis simulation on a passenger ship is performed. Velocity based model has been implemented and used to calculate the movement of the individual passengers under the evacuation situation. The age and gender of each passenger are considered as the factors of walking speed. Flocking algorithm is applied for the passenger's group behavior. Penalty walking velocity is introduced to avoid collision between the passengers and obstacles, and to prevent the position overlap among passengers. Application of flocking algorithm and penalty walking velocity to evacuation simulation is verified through implementation of the 11 test problems in IMO (International Maritime Organization) MSC (Maritime Safety Committee) Circulation 1238.

Application of the explicit time integration finite element method to quasi-static metal forming problems (금속 성형 공정의 준정적 변형 예측을 위한 외연적 시간 적분 유한 요소법의 적용에 대한 연구)

  • Yoo, Y.H.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.53-63
    • /
    • 1995
  • In the analysis of metal forming problems, the explicit time integration finite element method, which does not have convergence problems, is frequently used. The present work is to assess the applicability of the explicit time integration finite element method to quasi-static metal forming problems. Compressing analyses of thin-walled tubes and solid cylinders are performed with different loading velocities. The computed buckled profiles of thin walled tubes are compared with the theoretical and experimental ones and it is found that at sufficiently low loading velocity, the explicit time integration finite element method accurately predict quasi-static buckled profiles. When loading volocity is increased, the computed buckled profiles of thin-walled tubes are very sensitive to loading velocity however the computed profiles of solid cylinders are less sensitive to loading velocity. In orther words, the geometrically self-constrained specimens like solid cylinders are less sensitive to loading velocity than the geometrically unconstrained specimens like thin-walled tubes. As a result, it is found that the geometrically self-constrained problems which include the greater part of metal forming problems can be efficiently analyzed with loading velocity control technique.

  • PDF

Dynamic evolution characteristics of water inrush during tunneling through fault fracture zone

  • Jian-hua Wang;Xing Wan;Cong Mou;Jian-wen Ding
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • In this paper, a unified time-dependent constitutive model of Darcy flow and non-Darcy flow is proposed. The influencing factors of flow velocity are discussed, which demonstrates that permeability coefficient is the most significant factor. Based on this, the dynamic evolution characteristics of water inrush during tunneling through fault fracture zone is analyzed under the constant permeability coefficient condition (CPCC). It indicates that the curves of flow velocity and hydrostatic pressure can be divided into typical three stages: approximate high-velocity zone inside the fault fracture zone, velocity-rising zone near the tunnel excavation face and attenuation-low velocity zone in the tunnel. Furthermore, given the variation of permeability coefficient of the fault fracture zone with depth and time, the dynamic evolution of water flow in the fault fracture zone under the variable permeability coefficient condition (VPCC) is also studied. The results show that the time-related factor (α) affects the dynamic evolution distribution of flow velocity with time, the depth-related factor (A) is the key factor to the dynamic evolution of hydrostatic pressure.

The influence of the fluid flow velocity and direction on the wave dispersion in the initially inhomogeneously stressed hollow cylinder containing this fluid

  • Surkay D. Akbarov;Jamila N. Imamaliyeva;Reyhan S. Akbarli
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.247-275
    • /
    • 2024
  • The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought values are derived from the solution to the corresponding field equations by employing the discrete-analytical method. The dispersion equation is obtained using these expressions and boundary and related compatibility conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder containing the fluid.

The Effect of an 8-weeks Velocity-based Training on Strength and Mechanical Power of Professional Athletes (8주간 속도 기반 트레이닝이 전문 운동선수의 근력과 근 파워 능력에 미치는 영향)

  • Jae Ho Kim;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • Objective: The purpose of this study is to apply 8-week velocity-based training to domestic professional athletes and the kinematic and kinetic analysis of the 1-RM improvement of back squat and power clean, which can represent strength-power ability, to verify the effectiveness of velocity-based training in Korea and to establish a basic basis. Method: The subjects who participated in this study were 10 professional athletes from K University (age: 21.40 ± 0.97 yrs., height: 179.90 ± 3.54 cm., body mass: 71.298 ± 2.98 kg). All subjects performed back squat and power clean 1-RM before and after 8-weeks of velocity-based training. A 3-dimensional motion analysis with 8 infrared cameras and 4 channels of EMG was performed in this study. A paired t-test was used for statistical verification. The significant level was set at α=.05. Results: Both Back squat and Power Clean 1-RM showed statistically significant increases (p<.05). In the case of back squat, there was no statistically significant difference in both kinematic and kinetic variables (p>.05). In the case of Power Clean, only the quadriceps of Phase 1 showed a statistically significant decrease (p<.05). Conclusion: Domestic professional athletes can improve their strength-power ability through velocity-based training, and such training for at least 8-weeks is considered a way to improve their performance.

Development of flow measurement method using drones in flood season (II) - application of surface velocity doppler radar (드론을 이용한 홍수기 유량측정방법 개발(II) - 전자파표면유속계 적용)

  • Lee, Tae Hee;Kang, Jong Wan;Lee, Ki Sung;Lee, Sin Jae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.903-913
    • /
    • 2021
  • In the flood season, the measurement of the river discharge has many restrictions due to reasons such as budget, manpower, safety, convenience in measurement and so on. In particular, when heavy rain events occur due to typhoons, etc., it is difficult to measure the amount of flood due to the above problems. In order to improve this problem, in this study, a method was developed that can measure the river discharge in a flood season simply and safely in a short time with minimal manpower by combining the functions of a drone and a surface velocity doppler radar. To overcome the mechanical limitations of drones caused by weather issues such as wind and rainfall derived from the measurement of the river discharge using the conventional drone, we developed a drone with P56 grade dustproof and waterproof performance, stable flight capability at a wind speed of up to 36 km/h, and a payload weight of up to 10 kg. Further, to eliminate vibration which is the most important constraint factor in the measurement with a surface velocity doppler radar, a damper plate was developed as a device that combines a drone and a surface velocity Doppler radar. The velocity meter DSVM (Dron and Surface Veloctity Meter using doppler radar) that combines the flight equipment with the velocity meter was produced. The error of ±3.5% occurred as a result of measuring the river discharge using DSVM at the point of Geumsan-gun (Hwangpunggyo) located at Bonghwang stream (the first tributary stream of the Geum River). In addition, when calculating the mean velocity from the measured surface velocity, the measurement was performed using ADCP simultaneously to improve accuracy, and the mean velocity conversion factor (0.92) was calculated by comparing the mean velocity. In this study, the discharge measured by combining a drone and a surface velocity meter was compared with the discharge measured using ADCP and floats, so that the application and utility of DSVM was confirmed.

Application and Comparative Analysis of River Discharge Estimation Methods Using Surface Velocity (표면유속을 이용한 하천 유량산정방법의 적용 및 비교 분석)

  • Jae Hyun, Song;Seok Geun Park;Chi Young Kim;Hung Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.15-32
    • /
    • 2023
  • There are some difficulties such as safety problem and need of manpower in measuring discharge by submerging the instruments because of many floating debris and very fast flow in the river during the flood season. As an alternative, microwave water surface current meters have been increasingly used these days, which are easy to measure the discharge in the field without contacting the water surface directly. But it is also hard to apply the method in the sudden and rapidly changing field conditions. Therefore, the estimation of the discharge using the surface velocity in flood conditions requires a theoretical and economical approach. In this study, the measurements from microwave water surface current meter and rating curve were collected and then analyzed by the discharge estimation method using the surface velocity. Generally, the measured and converted discharge are analyzed to be similar in all methods at a hydraulic radius of 3 m or over or a mean velocity of 2 ㎧ or more. Besides, the study computed the discharge by the index velocity method and the velocity profile method with the maximum surface velocity in the section where the maximum velocity occurs at the high water level range of the rating curve among the target locations. As a result, the mean relative error with the converted discharge was within 10%. That is, in flood season, the discharge estimation method using one maximum surface velocity measurement, index velocity method, and velocity profile method can be applied to develop high-level extrapolation, therefore, it is judged that the reliability for the range of extrapolation estimation could be improved. Therefore, the discharge estimation method using the surface velocity is expected to become a fast and efficient discharge measurement method during the flood season.

The Study of Aliasing and Incidence Angle Dependence of Doppler Image on Humeral Artery (상완동맥 Doppler 영상의 입사각 의존성과 Aliasing에 관한 연구)

  • Kim, Sang-Jin;Ji, Tae-Jeong
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.379-387
    • /
    • 2008
  • Among methods to eliminate aliasing effects, the method of increasing velocity scale gradually eliminated the phenomenon in which the direction of the blood flow appeared in reverse. It was done by increasing the velocity scale while maintaining other parameters in the same state. The method of setting the Doppler angle to $0^{\circ}$ did not show significant changes in the wave pattern of the spectrum according to the angle. In actual ultrasonography tests, more accurate tests are expected to be carried out by applying variations to the velocity scale under the considerations of speed, accuracy, and convenience of the examination. The results showed that blood flow velocity increases exponentially according to the Doppler Angle. When the angle goes over $70^{\circ}$, the velocity value increases to an unmeasurable state. This indicates that in blood flow velocity measurements, the blood flow velocity is very dependent on the Doppler Angle. It also shows that the error increases when the incidence angle to the direction of blood flow exceeds $60^{\circ}$, and when the angle exceeds $70^{\circ}$, the error becomes even greater. In addition, he experiment results showed that an angle below $60^{\circ}$ is appropriate and for blood flow velocity measurements in extremity vessels, the most appropriate Doppler Angle is from $45^{\circ}$ to $60^{\circ}$.

  • PDF

Shear Wave Velocity Estimation of Railway Roadbed Using Dynamic Cone Penetration Index (동적 콘 관입지수를 이용한 철도노반의 전단파속도 추정)

  • Hong, Won-Taek;Byun, Yong-Hoon;Choi, Chan Yong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.25-31
    • /
    • 2015
  • Elastic behavior of the railway roadbed which supports the repeating dynamic loads of the train is mainly affected by the shear modulus of the upper roadbed. Therefore, shear wave velocity estimation of the uniformly compacted roadbed can be used to estimate the elastic behavior of the railway roadbed. The objective of this study is to suggest the relationship between the dynamic cone penetration index (DCPI) and the shear wave velocity ($V_s$) of the upper roadbed in order to estimate the shear wave velocity by using the dynamic cone penetration test (DCPT). To ensure the reliability of the relationship, the dynamic cone penetration test and the measurement of the shear wave velocity are conducted on the constructed upper roadbed. As a method for measurement of the shear wave velocity, cross hole is used and then the dynamic cone penetration test is performed at a center point between the source and the receiver of the cross hole. As a result of the correlation of the dynamic cone penetration index and the shear wave velocity at the same depths, the shear wave velocity is estimated as a form of involution of the dynamic cone penetration index with a determinant coefficient above 0.8. The result of this study can be used to estimate both the shear wave velocity and the strength of the railway roadbed using the dynamic cone penetrometer.