• Title/Summary/Keyword: VELOCITY

Search Result 23,225, Processing Time 0.042 seconds

Blood flow velocity in the anterior humeral circumflex artery and tear size can predict synovitis severity in patients with rotator cuff tears

  • Takahiro Machida;Takahiko Hirooka;Akihisa Watanabe;Hinako Katayama;Yuki Matsukubo
    • Clinics in Shoulder and Elbow
    • /
    • v.27 no.1
    • /
    • pp.11-17
    • /
    • 2024
  • Background: Rotator cuff tears are often associated with synovitis, but the ability of noninvasive ultrasonography to predict the severity of synovitis remains unclear. We investigated whether ultrasound parameters, namely peak systolic velocity in the anterior humeral circumflex artery and Doppler activity in the glenohumeral joint and subacromial space, reflect synovitis severity. Methods: A total of 54 patients undergoing arthroscopic rotator cuff repair were selected. Doppler ultrasound was used to measure peak systolic velocity in the anterior humeral circumflex artery and Doppler activity in the glenohumeral joint and subacromial space, and these values were compared with the intraoperative synovitis score in univariate and multivariate analyses. Results: Univariate analyses revealed that tear size, peak systolic velocity in the anterior humeral circumflex artery, and Doppler activity in the glenohumeral joint were associated with synovitis in the glenohumeral joint (P=0.02, P<0.001, P=0.02, respectively). In the subacromial space, tear size, peak systolic velocity in the anterior humeral circumflex artery, and Doppler activity in the subacromial space were associated with synovitis severity (P=0.02, P<0.001, P=0.02, respectively). Multivariate analyses indicated that tear size and peak systolic velocity in the anterior humeral circumflex artery were independently associated with synovitis scores in both the glenohumeral joint and the subacromial space (all P<0.05). Conclusions: These findings demonstrate that tear size and peak systolic velocity in the anterior humeral circumflex artery, which can both be measured noninvasively, are useful indicators of synovitis severity.

Pressure Drop Predictions Using Multiple Regression Model in Pulse Jet Type Bag Filter Without Venturi (다중회귀모형을 이용한 벤츄리가 없는 충격기류식 여과집진장치 압력손실 예측)

  • Suh, Jeong-Min;Park, Jeong-Ho;Cho, Jae-Hwan;Jin, Kyung-Ho;Jung, Moon-Sub;Yi, Pyong-In;Hong, Sung-Chul;Sivakumar, S.;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.2045-2056
    • /
    • 2014
  • In this study, pressure drop was measured in the pulse jet bag filter without venturi on which 16 numbers of filter bags (Ø$140{\times}850{\ell}$) are installed according to operation condition(filtration velocity, inlet dust concentration, pulse pressure, and pulse interval) using coke dust from steel mill. The obtained 180 pressure drop test data were used to predict pressure drop with multiple regression model so that pressure drop data can be used for effective operation condition and as basic data for economical design. The prediction results showed that when filtration velocity was increased by 1%, pressure drop was increased by 2.2% which indicated that filtration velocity among operation condition was attributed on the pressure drop the most. Pressure was dropped by 1.53% when pulse pressure was increased by 1% which also confirmed that pulse pressure was the major factor affecting on the pressure drop next to filtration velocity. Meanwhile, pressure drops were found increased by 0.3% and 0.37%, respectively when inlet dust concentration and pulse interval were increased by 1% implying that the effects of inlet dust concentration and pulse interval were less as compared with those changes of filtration velocity and pulse pressure. Therefore, the larger effect on the pressure drop the pulse jet bag filter was found in the order of filtration velocity($V_f$), pulse pressure($P_p$), inlet dust concentration($C_i$), pulse interval($P_i$). Also, the prediction result of filtration velocity, inlet dust concentration, pulse pressure, and pulse interval which showed the largest effect on the pressure drop indicated that stable operation can be executed with filtration velocity less than 1.5 m/min and inlet dust concentration less than $4g/m^3$. However, it was regarded that pulse pressure and pulse interval need to be adjusted when inlet dust concentration is higher than $4g/m^3$. When filtration velocity and pulse pressure were examined, operation was possible regardless of changes in pulse pressure if filtration velocity was at 1.5 m/min. If filtration velocity was increased to 2 m/min. operation would be possible only when pulse pressure was set at higher than $5.8kgf/cm^2$. Also, the prediction result of pressure drop with filtration velocity and pulse interval showed that operation with pulse interval less than 50 sec. should be carried out under filtration velocity at 1.5 m/min. While, pulse interval should be set at lower than 11 sec. if filtration velocity was set at 2 m/min. Under the conditions of filtration velocity lower than 1 m/min and high pulse pressure higher than $7kgf/cm^2$, though pressure drop would be less, in this case, economic feasibility would be low due to increased in installation and operation cost since scale of dust collection equipment becomes larger and life of filtration bag becomes shortened due to high pulse pressure.

Micro-PIV Measurements of In Vitro Blood Flow in a Micro-Channel

  • Park, Cheol-Woo;Lee, Sang-Joon;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.30-35
    • /
    • 2003
  • Flow characteristics of blood flow in a micro channel were investigated experimentally using a micro-PIV (Particle Image Velocimetry) velocity field measurement technique. The main objective of this study was to understand the real blood flow in micron-sized blood vessels. The Reynolds number based on the hydraulic diameter of micro-channel for deionized (DI) water was about Re=0.34. For each experimental condition, 100 instantaneous velocity fields were captured and ensemble-averaged to get the spatial distributions of mean velocity. In addition, the motion of RBC (Red Blood Cell) was visualized with a high-speed CCD camera. The captured flow images of nano-scale fluorescent tracer particles in DI water were clear and gave good velocity tracking-ability. However, there were substantial velocity variations in the central region of real blood flow in a micro-channel due to the presence of red blood cells.

  • PDF

Finite Element Vibration Analysis of a Curved Pipe Conveying Fluid with Uniform Velocity (일정속도 유체를 운반하는 곡관의 유한요소 진동해석)

  • Lee, Seong-Hyeon;Jeong, Weui-Bong;Seo, Young-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1049-1056
    • /
    • 2008
  • A method for the vibration analysis of curved beam conveying fluid with uniform velocity was presented. The dynamics of curved beam is based on the inextensible theory. Both in-plane motion and out-of-plane motion of curved beam were discussed. The finite element method was formulated to solve the governing equations. The natural frequencies calculated by the presented method were compared with those by analytical solution, straight beam theories and Nastran. As the velocity of fluid becomes larger, the results by straight beam model became different from those by curved beam model. And it was shown that the curved beam element should be used to predict the critical velocity of fluid exactly. The influence of fluid velocity on the frequency response function was also discussed.

Examination of Optimal Reaction Mechanism in Oxygen Enriched Condition (산소부화조건에서의 반응기구 검토)

  • Han, Ji-Woong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.247-253
    • /
    • 2003
  • Burning velocities of conventional methane flame and oxygen-enriched methane flame were determined by experimentally and numerically at atmospheric pressure in order to examine the validity of various detailed reaction mechanisms in oxygen-enriched flame. The schlieren system was adopted to obtain the burning velocity of flame stabilized on a circular nozzle. Premix code was employed to compute the burning velocity. Three reaction mechnisms were tested at several oxygen enrichment level, whose names are GRI 3.0, MB(Miller and Bowman) and LKY(Lee Ki Yong) reaction mechanism. Sensitivity analysis was also performed to discriminate dominantly affecting reaction on burning velociy. The results showed that conventional reaction mechanisms originally based on methane-air flame were underpredict the burning velocity at high oxygen-enrichment level. The modified GRI 3.0 reaction mechanism based on our experimental results was suggested and shows a good agreement in estimating the burning velocity and the NO number density of oxygen-enriched flame.

  • PDF

Urban Model for Mean Flow and Turbulence (평균풍속 및 난류 예측을 위한 도심지 모델)

  • Kim, Byung-Gu;Lee, Chang-Hoon;Kim, Seog-Cheol;Jang, Dong-Du;Joo, Seok-Jun;Shim, Woo-Sup
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2923-2928
    • /
    • 2007
  • The study of model for velocity and turbulence within the urban canopy was carried out. To evaluate existing urban model we conducted wind tunnel experiment and large-eddy simulation (LES). Mean velocity profile and turbulence are measured within simple three different obstacle arrays. To obtain supplemental data and to verify morphological model large-eddy simulation was performed. Several methods have been used to achieve embodying the flow field in urban area. Recently, morphological method obtaining flow parameters from the statistical or physical representation of obstacle elements is a arising method. It was found that all morphological model, evaluated in this study, over predict the friction velocity, most sensitive one among the flow parameters. Velocity and turbulence in the urban canopy layer were improved by the correction using 'true' friction velocity.

  • PDF

Turbulence Characteristics in a Circular Open Channel by PIV Measurements

  • Kim, Sun-Gu;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.930-937
    • /
    • 2011
  • The characteristics of mean velocity and turbulence have been analyzed in the circular open channel flow using PIV measurement data for a wide range of water depth. The measured data are fitted to a velocity distribution function over the whole depth of the open channel. Reynolds shear stress and mean velocity in wall unit are compared with the analytic models for fully-developed turbulent boundary layer. Both the mean velocity and Reynolds shear stress have different distributions from the two-dimensional boundary layer flow when the water depth increases over 50% since the influence of the side wall penetrates more deeply into the free surface. The cross-stream Reynolds normal stress also has considerably different distribution in view of its peak value and decreasing rate in the outer region whether the water depth is higher than 50% or not.

Monitoring System Design for Estimating Lateral Velocity and Sideslip Angle (감지시스템을 통한 차량의 횡 속도 및 슬립각 추정)

  • Han, Sang-Oh;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • Information of the lateral velocity and the sideslip angle in a vehicle is very useful in many active vehicle safety applications such as yaw stability control and rollover prevention. Because cost-effective sensors to measure the lateral velocity and the sideslip angle are not available, reliable algorithms to estimation them are necessary. In this paper, a sliding mode observer is designed to estimate the lateral velocity. The side slip angle is estimated using the recursive least square with the disturbance observer and the pseudo integral. The estimated parameters from the combined estimation method are updated recursively to minimize the discrepancy between the model and the physical plant, and any possible effects caused by disturbances. The performance of the proposed monitoring system is evaluated through simulations and experiments.

Numerical Study on the Effects of Velocity Profile Distortion and Swirl on Pressure Difference of Orifice Flowmeter Due to Pipe structure (배관구조에 따른 속도분포 변형과 선회가 오리피스 유량계의 압력차에 미치는 영향에 대한 수치적 연구)

  • Kim, Hong-Min;Kim, Kwang-Yong;Her, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1450-1456
    • /
    • 2003
  • Three-dimensional pipe flows with elbows, tees and headers in three different pipe systems are calculated to estimate the effect of asymmetry of axial velocity profile and swirl on measuring accuracy of an orifice flowmeter. It is evaluated how the pressure difference across the orifice is dependent on the upstream straight pipe length and how swirl intensity, swirl angle, and axial velocity distribution affect the measuring error of the orifice flowmeter. From the results, it is found that variation of the pressure difference across the orifice is negligible in case that maximum swirl angle is less than 2$^{\circ}$, and also that the pressure difference across the orifice is more sensitive to the asymmetry of axial velocity profile rather than the swirl intensity.

Infeed Control Algorithm of Sorting System Using Modified Trapezoidal Velocity Profiles

  • Kim, Ki Hak;Choi, Yong Hoon;Jung, Hoon
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.328-337
    • /
    • 2015
  • This paper applies acceleration/deceleration control-based velocity profiles to an infeed control algorithm for a cross-belt-type sorting system to improve the accuracy and performance of the system's infeed. The velocity profiles are of a trapezoidal shape and often have to be modified to ensure that parcels correctly synchronize with their intended carriers. Under the proposed method, an infeed line can handle up to 5,600 items/h, which indicates a 40% increase in performance in comparison with its existing handling rate of 4,000 items/h. This improvement in performance may lead to a reduction in the number of infeed lines required in a sorting system. The proposed infeed control algorithm is applied to a cross-belt-type sorting system (model name: SCS 1500) manufactured by Vanderlande Industries.