• Title/Summary/Keyword: VELOCITY

Search Result 23,171, Processing Time 0.047 seconds

Ultrasonic Pulse Velocity Evaluation of Concrete During Heating (가열 중 콘크리트의 초음파속도 평가)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Lee, Sang-Kyu;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.210-211
    • /
    • 2018
  • In this study, the ultrasonic pulse velocity of the concrete cooled to room temperature after heating and the concrete during heating were evaluated. Also, the ultrasonic pulse velocity and mechanical properties of concrete were compared. As a result, the ultrasonic pulse velocity decreased when the concrete degraded during heating, and the ultrasonic pulse velocity of the cooled concrete decreased significantly. Which is consistent with the deterioration of mechanical properties of concrete.

  • PDF

On the Optimum Modelization for a Spray Column Direct Contact Heat Exchanger (분사칼럼식 직접접촉 열교환기의 최적 모델링을 위한 연구)

  • Yoon, S.M.;Kang, Y.H.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • The purpose of this study is to lay groundwork for a complete analysis of two component flow by analyzing a single component flow made of continuous fluid without dispersed phase. In order to achieve uniform velocity distributions which are desirable in designing an optimum spray column direct contact heat exchanger, the influence of injection nozzle orientation has been investigated for axial and radial injections. The results that radial injection ensures more uniform velocity distributions compared to the axial case. The flow characteristics in a spray column have been investigated with various L/D values and inlet velocities, the most uniform internal velocity distributions have been obtained for the case of L/D=10 and 0.1m/sec. In the present investigation, it is shown that radial injection method for the continuous flow is advantageous in obtaining desirable uniform velocity distributions in a spray column. It is also found that as the value of L/D increases and the inlet velocity decreases, the flow improves to be better uniform velocity distributions.

  • PDF

Measurement of Particle Deposition Velocity Toward a Vertical Wafer Surface (수직 웨이퍼상의 입자 침착속도의 측정)

  • Bae, G.N.;Lee, C.S.;Park, S.O.;Ahn, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.521-527
    • /
    • 1995
  • The average particle deposition velocity toward a vertical wafer surface in a vertical airflow chamber was measured by a wafer surface scanner(PMS Model SAS-3600). Polystyrene latex(PSL) spheres with diameters between 0.3 and $0.8{\mu}m$ were used. To examine the effect of the airflow velocity on the deposition velocity, experiments were conducted for three vertical airflow velocities ; 20, 30, 50cm/s. Experimental data of particle deposition velocity were compared with those given by prediction model suggested by Liu and Ahn(1987).

  • PDF

Numerical Analysis on Effect of the Environmental Velocity for Circular Heating Source with Heat Generation (열생성을 가진 원형발열체의 외부 유속의 영향에 대한 수치해석)

  • Bae, K.Y.;Ji, M.K.;Chung, H.S.;Chung, H.T.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.30-35
    • /
    • 2004
  • This paper represents the numerical analysis on effect of the environmental velocity for circular heating source with heat generation. In general heating system, the oil and sheath heater is widely used, but these systems have many problems. So, the heating source with carbon ingredient has been researched in many country about manufacture, thermal and electrical properties. In this research, a circular heating source was studied through numerical analysis on several conditions of unsteady state, beat generation and environmental velocity. The temperature distributions at steady state is appeared as a non-linear pattern with variations of environmental velocity. So, the correlation equation between temperature at steady state and environmental velocity was obtained.

  • PDF

Optimum Design of Beating Cam for High Speed Rapier Loom (고속 래피어 직기용 바듸침 캠의 최적설계)

  • Kim, Jong-Su;Kim, Dae-Won
    • 연구논문집
    • /
    • s.28
    • /
    • pp.89-100
    • /
    • 1998
  • This paper deals with the design and analysis of a beating cam. The beating device of a high speed rapier loom, weaving fabric by completion of warp-weft patterns, is driven by double cam type on the same axis. As the double cam, coupled with two cams, performs the mutual conjugate motion, the double cam must be very preciously designed for smooth. For the shape design of a double cam, an instant velocity center method is proposed. This method can determine the cam profile from the contact conditions of the cam and roller follower and the velocity relationships at the instant velocity center. And the practical applicability was verified by developing “DISKCAM of a CAD program. As the results in this paper, the shapes of two cams, which are in the conjugate motion, are designed by instant velocity center method. We applied 8-order polynominals for the beating as displace¬ment curves for shape determination of double cams. The data of displacement, velocity, and acceleration of beating cam can be used adjust in accurate operation and to develope an advanced beating device.

  • PDF

The Research via Linear of Tantalum Thin Film Thickness Depending on Revolution Velocity of Spin Coater (스핀코터 회전속도에 따른 탄탈륨 박막두께의 선형모델에 관한 연구)

  • Kim, Seung Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.17-22
    • /
    • 2020
  • Recently, the decrease in thin film thickness has been actively studied by changing several physical elements such as the increase in revolution velocity of lower substrate equipped with AC or DC motor. In this paper, we propose a novel spin coater control system that changes AC or DC motor and common use software with limitation of velocity and position control into step motor and LABVIEW software based on GUI to control revolution velocity and position more precisely. By determining six input values of rotation velocity 1, 5, 10, 25, 50, 100 PPS, we fabricated six samples using coating target, TA(tantalum) on silicon substrate and measured their thin film thickness by SEM. Hence, this research can be applied to inferring thin film thickness of tantalum regarding any value of revolution velocity without additional experiments and for linear reference model via property analysis of thin film thickness using other thin-film materials.

A Fast GPS Signal Acquisition Method for High Speed Vehicles Using INS Velocity and Multiple Correlators (INS 속도와 다중 상관기를 이용한 고속 항체용 GPS 수신기의 빠른 신호 획득 기법)

  • Jeong, Ho-Cheol;Kim, Jeong-Won;Hwang, Dong-Hwan;Lee, Sang-Jeong;Lee, Tae-Gyoo;Song, Ki-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.603-607
    • /
    • 2008
  • This paper proposes a fast acquisition method using INS velocity and multiple correlators for high speed vehicles. In order to reduce acquisition time in GPS receiver, the method utilizes inertial velocity information and multiple correlators. Search range of the Doppler frequency is reduced by using INS velocity and the number of cells at one search can be increased by using multiple correlators. By using both multiple correlators and the INS velocity in the acquisition, search space can be greatly reduced. Experimental results show that the method gives faster signal acquisition performance than the conventional method.

IMU-Barometric Sensor-based Vertical Velocity Estimation Algorithm for Drift-Error Minimization (드리프트 오차 최소화를 위한 관성-기압센서 기반의 수직속도 추정 알고리즘)

  • Ji, Sung-In;Lee, Jung Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.937-943
    • /
    • 2016
  • Vertical velocity is critical in many areas, such as the control of unmanned aerial vehicles, fall detection, and virtual reality. Conventionally, the integration of GPS (Global Positioning System) with an IMU (Inertial Measurement Unit) was popular for the estimation of vertical components. However, GPS cannot work well indoors and, more importantly, has low accuracy in the vertical direction. In order to overcome these issues, IMU-barometer integration has been suggested instead of IMU-GPS integration. This paper proposes a new complementary filter for the estimation of vertical velocity based on IMU-barometer integration. The proposed complementary filter is designed to minimize drift error in the estimated velocity by adding PID control in addition to a zero velocity update technique.

Application Advanced One-Sided Stress Wave Velocity Measurement in Concrete (콘크리트에서의 One-Sided 응력파 속도 측정 기법의 적용에 관한 연구)

  • ;;J.S.Popovice;J.D.Achenbach
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.544-550
    • /
    • 1997
  • In this study, the advanced on-sided stress wave velocity measurement method was applied to investigate the effects of composition, age and moisture content in concrete. Two concrete specimens that have different composition were used to figure out the change of the Longitudinal and Surface wave velocity due to different composition. The other concrete specimen was cast and the Longitudinal and Surface wave velocity was monitored during curing process. After 28-day old, the effect of moisture content in the concrete specimen to the stress wave velocity is presented in this paper during the time period 43-74 days after casting. For drying process. an aggregate drying oven was used. A conventional ultrasonic through transmission method was used to compare with the results determined by the one-sided method.

  • PDF

Extinguishing Concentration of Inert Gases in Heptane Pool Fires (헵탄 풀화재에서 불활성기체 소화농도)

  • Jung, Tae-Hee;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.71-76
    • /
    • 2012
  • The coflow velocity effect on the minimum extinguishing concentration(MEC) was investigated experimentally in heptane cup-burner flames. Various inert gases($N_2$, Ar, $CO_2$, He) were added into the oxidizer to find the critical concentration and the effectiveness of the agents on flame extinction. The experimental results showed that the MECs were increased with increasing coflow velocity for most inert gases except helium, but the higher coflow velocity induced the lower burning rates of heptane. This indicated that the increase of coflow velocity resulted in the decrease of fuel velocity evaporated from fuel surface, and hence the stain rate on the reaction zone was also decreased. In the case of helium as a additive, the extinguishing concentration was independent of the coflow velocity because the heat conductivity was ten times larger than the other inert gases and flow effect by a strain rate might be compensated for heat loss to the surroundings.