• Title/Summary/Keyword: VEGETATION CONSERVATION

Search Result 567, Processing Time 0.031 seconds

Development of Evaluation Model on Greenspace for Sustainability of Site-scale Development Projects (단지규모 개발사업의 지속가능성 확보를 위한 녹지 평가 모형 개발)

  • 양병이;이관규
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.97-107
    • /
    • 2000
  • This study aims to develop the model of evaluation on greenspace to increase the sustain ability of the planning and management for site-scale development projects. The results of this study can be summarized as follows: (1) The comprehensive principles of sustainable development projects were established, which include coexistence of man and nature, reflection of ecological principles, minimization of environmental pollution and damage, recycling and reuse of materials. (2) According to established principles, the evaluation criteria were classified into seven categories as follows: retention of ample greenspace, formation of greenspace as a habitat, species diversity of vegetation, consideration of indigenous plants, construction of green network, conservation of greenspace, and reuse of plant materials. (3) As a result of the analysis of questionnaire of experts, evaluation model was worked out with which we can evaluate environmental friendliness greenspace. And, the final evaluation indicators for greenspace are the rate of greeneries volume, securing habitat, indigenous plants, reuse of plant materials, and species diversity of vegetation, and the indicator of greenspace conservation.

  • PDF

Analysis of Environmental Characteristics for Habitat Conservation and Restoration of Near Threatened Sparganium japonicum (준위협종 긴흑삼릉의 서식지 보전과 복원을 위한 환경 특성 분석)

  • Kim, Seohyeon;Kim, Jae Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.37-51
    • /
    • 2015
  • Sparganium japonicum Rothert. is designated as a near threatened species by the National Institute of Biological Resources and is restrictively distributed in South Korea. To conserve and restore habitats of this plant, we investigated environmental characteristics and vegetation at five habitats during the growing season. Thirty plant species from seventeen families were found in the S. japonicum community. The species frequently found in this community included Utricularia vulgaris, Potamogeton distinctus, Phragmites japonica, Cicuta virosa, Persicaria thunbergii, Phragmites communis, Hydrilla verticillata. Maximum height of this plant reached at August and average height at five habitats is 120 cm at this time. Water and soil environmental factors showed low values compared with that of other wetlands. S. japonicum lived in not only shallow water level but also deep water level. These results can be helpful for S. japonicum habitat conservation and restoration.

Preliminary Biotop Mapping Using High-Resolution Satellite Remote Sensing Data

  • Shin, Dong-Hoon;Lee, Kyoo-Seock
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.856-858
    • /
    • 2003
  • Biotop map can be utilized in the urban area for nature conservation and impact assessment for the proposed activities. High resolution satellite data such as IKONOS and KOMPSAT1-EOS were used to classify land use activities in biotop mapping. After land use classification, field -check was done to survey the wildlife and vegetation. These maps were combined and the boundaries were delineated to produce the biotop map. Within the boundary the characteristics of each polygon were identified, and named. This study was carried out at Daedok Science Town in Taejeon Metropolitan Area. The purpose of this study is to produce the biotop map using high resolution remote sensing data together with other ground data.

  • PDF

The Vegetation Structure of Beomseom Islet, Jeju-do (제주도 범섬의 식생구조)

  • Kim Chan-Soo;Song Gwan-Pil;Moon Myong-Ok;Kang Young-Jae;Byun Gwang-Ok;Kim Moon-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.201-210
    • /
    • 2005
  • This study was conducted to prepare efficient and systematic measures for nature conservation and management in Beomseom Islet, and to provide for basic data to investigate the process of vegetation change in the future. The vegetation of Beomseom Islet was classified to six vegetation type; i.e., Miscanthus sinensis community, Pinus thunbergii community, Iythophyte vegetation, evergreen broad leaf community, shrub community, and Pseudosasa japonica community. The size of each vegetation type was 40,230 $m^2$ ($23.3\%$) for shrub community, 39,366 $m^2$($22.8\%$) for Iythophyte vegetation, 30,012 $m^2$ ($17.4\%$) fur Pinus thunbergii community, 29,853 $m^2$ ($17.3\%$) for Miscanthus sinensis community, 5,564 $m^2$ ($3.2\%$) for evergreen broad leaf community, and 3,325 $m^2$ ($1.9\%$) for Pseudosasa japonica community. The area of non-vegetated sea cliff Bone that composed of bare rocks is 24,246 $m^2$($14.1\%$). We estimated that these distribution patterns of vegetation were the result of various environmental factors such as the steepness of slope and shallowness of soil as well as the cultivation of exotic plants causing disruption of native vegetation.

Effect of New Mattress System with Vegetation Base Materials on the Vegetation Coverage of Stream bank (계안 복원을 위한 매트리스형 식생기반재 돌망태 공법의 계안사면 피복효과)

  • Choi, Hyung Tae;Jeong, Yong-Ho;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.175-184
    • /
    • 2012
  • This study was conducted to develop new mattress systems with vegetation base materials for protecting stream bank and rapid rehabilitation. Vegetation base materials are primarily compounded with fine soil, organic composts and peat moss as plant fibers, a water retainer and a soil improver. Peat moss can usually provide necessary natural fibers and organic materials in soil. Especially, peat moss can absorb up to 25 times its own weight in water and is therefore valued as a water retainer to prevent drying effect of vegetation base materials which can harm the growth of vegetation in mattresses. Normally mattress systems resist the lateral earth pressures or stream power by their own weight. Therefore, filled materials must have suitable weight, compressive strength and durability to resist the loading, as well as the effects of water and weathering. In this project, 100 to 200-mm clean, hard stones were basically specified, and about 50-mm rubbles were also used. Test application of new mattress system carried out in the stream bank of a small stream in the Gwangreung experimental forest, belonging to Korea Forest Research Institute (KFRI) in December 16th, 2006. As a result of the monitoring of vegetation coverage of test application plots (each plot size is 4 by 2 m), the coverage of all plots reached 100% in the end of May, 2007 (approximately 50 days passed after the first gemination of vegetation). The coverage of the plots using big hard stones and organic composts and the plots containing peat moss increased more rapidly. The results show that peat moss is effective to retain soil moisture and establish more sound environment for vegetation gemination.

Phytosociological Community Type Classification and Stand Structure in the Forest Vegetation of Hongdo Island, Jeollanam-do Province (전라남도 홍도 산림식생의 식물사회학적 군락유형분류와 임분 구조)

  • Kim, Ho-Jin;Shin, Jae-Kwon;Lee, Cheul-Ho;Yun, Chung-Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.3
    • /
    • pp.245-257
    • /
    • 2018
  • The study was carried out to discover the forest vegetation structure in Hongdo Island, Jeonnam province. Vegetation data were collected by total of forty one quadrate plots using Z-M phytosociological method from June to August in 2017, and analyzed by vegetation classification, mean importance value and species diversity. As a result of vegetation type classification, Castanopsis sieboldii community group was classified at a top level of vegetation hierarchy. In the level of community, it was classified into Neolitsea sericea community and Carpinus turczaninowii community. N. sericea community was subdivided into Ficus erecta group(Vegetation unit 1) and Arisaema ringens group(VU 2). C. turczaninowii community was subdivided into Fraxinus sieboldiana group(VU 3) and C. turczaninowii typical group(VU 4). Therefore, it was classified into total of four vegetation units(one community group, three communities and four groups). As a result of mean importance value, Castanopsis sieboldii was the highest in VU 1, VU 2, VU 4, and C. turczaninowii in VU 4, respectively. In case of species diversity, VU 3 showed the highest among four units in species diversity index. In conclusion, the forest vegetation of Hongdo Island was classified into four units and seven species groups. Hongdo Island could be conclusively managed by community ecological approach for the units and groups. Also it was considered that a research for the succession to the evergreen broad-leaved forest should be more intensively proceeded near future.

Environmental spatial data-based vegetation impact assessment for advanced environmental impact assessment (환경공간정보를 이용한 식생부문 환경영향평가 고도화 방안 연구)

  • Yuyoung Choi;Ji Yeon Lee;Hyun-Chan Sung
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.99-111
    • /
    • 2022
  • Vegetation is the basis for biodiversity conservation and sustainable development. In the Environmental Impact Assessment (EIA), which is the most direct and efficient policy measure to prevent degradation of nature, vegetation-related assessment has limitations as it is not based on quantitative and scientific methods. In addition, it focuses on the presence of protected species; hence, it does not take into account the role of vegetation as a habitat on a wide-area scale. As a way to overcome these limitations, this study aims to contribute to the quantification and advancement of future EIA on vegetation. Through the review of previous studies, core areas, connectivity, and vegetation condition were derived as the items to be dealt within the macroscopic aspect of vegetation impact assessment. Each item was spatially constructed using land cover maps and satellite imageries, and time series change analysis was performed. As a result, it was found that vegetation has been continuously deteriorating due to development in all aspects, and in particular, development adversely affects not only the inside of the project site but also the surrounding area. Although this study suggested the direction for improvement of the EIA in the vegetation sector based on data analysis, a more specific methodology needs to be established in order to apply it to the actual EIA process. By actively utilizing various environmental spatial data, the impact of the development on the natural ecosystem can be minimized.

A Study on Vegetation Index for Zoning of Natural Ecosystem on Baekdudaegan (백두대간 자연생태계의 지역구분을 위한 식생지수에 관한 연구)

  • 김갑태
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.3
    • /
    • pp.223-232
    • /
    • 2002
  • For the zoning of natural ecosystem, Vegetation Index is calculated from the vegetation data surveyed on Baekdudaegan (Pijae-Doraegijae). Five factors -biodiversity, conservation value of the stand, environmental quality, longevity of the stand, site productivity- are considered in the calculation of Vegetation Index. Vegetation Index might be a useful zoning tool for management of Baekdudaegan. For Vegetation Index I, 59 sample plots 52.2% of total 113 sample plots are belong to core area, 34 sample plots 30.l% and 20 sample plots 17.7% are belong to buffer zone and transition area, respectively. For Vegetation Index II, 49 sample plots 43.4% of total 113 sample plots are belong to core area, 38 sample plots 33.6% and 26 sample plots 23.0% are belong to buffer zone and transition area, respectively.

Landscape Ecology Concept, Principles and Its Rlation to Monothematic (e.g. Vegetation) Survey (경관생태학의 개념, 원리 및 식생조사와의 관계)

  • Isaak, S. Zonneveld
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.357-372
    • /
    • 1998
  • Land (scape) ecology is a trans-disciplinary science studying the related systems at the earth surface, in their visual, structural and functional aspects. it serves as an umbrella under which abiotic and biotic sciences, in an integrated way, study the for each relevant land attributes and their interrelations. The spatial aspects of these relations have a special interest. Landscape ecology my have a pure scientific purpose, but usually is executed in an applied context, related to land evaluation for land use and conservation. Depending on the aim and application of the study, one of the land attributes may get special attention. Vegetation mapping may contribute to landscape ecological study but also benefit from it especially in case of reconnaissance surveys. This is because in less detailed surveys of any land attribute, like land form, soil, vegetation, one must necessarily apply landscape ecological principles in the survey methodology, including remote sensing.

  • PDF