• Title/Summary/Keyword: VECTIS

Search Result 3, Processing Time 0.021 seconds

A PARAMETRIC SENSITIVITY STUDY OF GDI SPRAY CHARACTERISTICS USING A 3-D TRANSIENT MODEL

  • Comer, M.A.;Bowen, P.J.;Sapsford, S.M.;Kwon, S.I.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.145-153
    • /
    • 2004
  • Potential fuel economy improvements and environmental legislation have renewed interest in Gasoline Direct Injection (GDI) engines. Computational models of fuel injection and mixing processes pre-ignition are being developed for engine optimisation. These highly transient thermofluid models require verification against temporally and spatially resolved data-sets. The authors have previously established the capability of PDA to provide suitable temporally and spatially resolved spray characteristics such as mean droplet size, velocity components and qualitative mass distribution. This paper utilises this data-set to assess the predictive capability of a numerical model for GDI spray prediction. After a brief description of the two-phase model and discretisation sensitivity, the influence of initial spray conditions is discussed. A minimum of 5 initial global spray characteristics are required to model the downstream spray characteristics adequately under isothermal, atmospheric conditions. Verification of predicted transient spray characteristics such as the hollow-cone, cone collapse, head vortex, stratification and penetration are discussed, and further improvements to modelling GDI sprays proposed.

Fuel Evaporation Characteristics of a Port Injection Type Motorcycle Engine with Changing Fuel Spray Timing (포트분사식 이륜차 엔진의 연료 분사시기에 따른 연료 증발 특성)

  • Lee Kihyung;Kang Inbo;Kim Hyungmin;Baik Seungkook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1360-1368
    • /
    • 2005
  • This study investigates the characteristics of spray, such as evaporation rate and spray trajectory, for a 4-hole injector which is applied to a 4-valve motorcycle gasoline engine. Three dimensional, unsteady, compressible flow and spray within the intake-port and cylinder have been simulated using the VECTIS code. Spray characteristics were investigated at 6000 rpm engine speed. Furthermore, we visualized fuel behavior in the intake-port using a CCD camera synchronized with a stroboscope in order to compare with the analytical results. Boundary and intial conditions were employed by complete 1-D simulation of the engine using the WAVE code. Fuel was injected into the intake-port at two time intervals relative to the position of the intake valves so that the spray arrived when the valves were closed and fully open. The results showed that the trajectory of the spray was directed towards the lower wall of the port with injection against the closed valves. With open valve injection, a large portion of the fuel was lifted by the co-flowing air towards the upper half of the port and this was confirmed by simulation and visualization.

Numerical Analysis of Flow Characteristics in Swirl Chamber Type Diesel Engine (연락공 형상에 따른 와류실식 디젤기관의 유동 특성 수치해석)

  • Kwon Taeyun;Choi Gyeungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.49-57
    • /
    • 2005
  • In this study, in-cylinder flow of the swirl chamber type diesel engine numerically simulated by VECTIS code. The flow fields during the intake and compression process were also investigated in detail. Numerical results revealed that the generation and distortion of the swirling, tumbling vortices and those influences on turbulence kinetic energy by shape of the jet passage, angle and area. It was also found that flow characteristics were affected by inflow velocity that depends on change of the jet passage shape. Swirl ratio was increased according to decrease of jet passage area, and was affected by piston motion according to increase of jet passage angle. Tumbling vortices had the similar in various cases, but tumble ratio was increased with the inflow velocity. The generation of turbulence kinetic energy was considerably influenced by complex effects of swirling and tumbling vortices.