• Title/Summary/Keyword: VEC Model

Search Result 153, Processing Time 0.026 seconds

A Machine Learning-Based Vocational Training Dropout Prediction Model Considering Structured and Unstructured Data (정형 데이터와 비정형 데이터를 동시에 고려하는 기계학습 기반의 직업훈련 중도탈락 예측 모형)

  • Ha, Manseok;Ahn, Hyunchul
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • One of the biggest difficulties in the vocational training field is the dropout problem. A large number of students drop out during the training process, which hampers the waste of the state budget and the improvement of the youth employment rate. Previous studies have mainly analyzed the cause of dropouts. The purpose of this study is to propose a machine learning based model that predicts dropout in advance by using various information of learners. In particular, this study aimed to improve the accuracy of the prediction model by taking into consideration not only structured data but also unstructured data. Analysis of unstructured data was performed using Word2vec and Convolutional Neural Network(CNN), which are the most popular text analysis technologies. We could find that application of the proposed model to the actual data of a domestic vocational training institute improved the prediction accuracy by up to 20%. In addition, the support vector machine-based prediction model using both structured and unstructured data showed high prediction accuracy of the latter half of 90%.

Effects of Macroeconomic Conditions and External Shocks for Port Business: Forecasting Cargo Throughput of Busan Port Using ARIMA and VEC Models

  • Nam, Hyung-Sik;D'agostini, Enrico;Kang, Dal-Won
    • Journal of Navigation and Port Research
    • /
    • v.46 no.5
    • /
    • pp.449-457
    • /
    • 2022
  • The Port of Busan is currently ranked as the seventh largest container port worldwide in terms of cargo throughput. However, port competition in the Far-East region is fierce. The growth rate of container throughput handled by the port of Busan has recently slowed down. In this study, we analyzed how economic conditions and multiple external shocks could influence cargo throughput and identified potential implications for port business. The aim of this study was to build a model to accurately forecast port throughput using the ARIMA model, which could incorporate external socio-economic shocks, and the VEC model considering causal variables having long-term effects on transshipment cargo. Findings of this study suggest that there are three main areas affecting container throughput in the port of Busan, namely the Russia-Ukraine war, the increased competition for transshipment cargo of Chinese ports, and the weaker growth rate of the Korean economy. Based on the forecast, in order for the Port of the Port of Busan to continue to grow as a logistics hub in Northeast-Asia, policy intervention is necessary to diversify the demand for transshipment cargo and maximize benefits of planned infrastructural investments.

Application of Gaussian Mixture Model for Text-based Biomarker Detection (텍스트 기반의 바이오마커 검출을 위한 가우시안 혼합 모델의 응용)

  • Oh, Byoung-Doo;Kim, Ki-Hyun;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.550-551
    • /
    • 2018
  • 바이오마커는 체내의 상태 및 변화를 파악할 수 있는 지표이다. 이는 암을 비롯한 다양한 질병에 대하여 진단하는데 활용도가 높은 것으로 알려져 있으나, 새로운 바이오마커를 찾아내기 위한 임상 실험은 많은 시간과 비용을 소비되며, 모든 바이오마커가 실제 질병을 진단하는데 유용하게 사용되는 것은 아니다. 따라서 본 연구에서는 자연어처리 기술을 활용해 바이오마커를 발굴할 때 요구되는 많은 시간과 비용을 줄이고자 한다. 이 때 다양한 의미를 가진 어휘들이 해당 질병과 연관성이 높은 것으로 나타나며, 이들을 분류하는 것은 매우 어렵다. 따라서 우리는 Word2Vec과 가우시안 혼합 모델을 사용하여 바이오마커를 분류하고자 한다. 실험 결과, 대다수의 바이오마커 어휘들이 하나의 군집에 나타나는 것을 확인할 수 있었다.

  • PDF

Application of Text-Classification Based Machine Learning in Predicting Psychiatric Diagnosis (텍스트 분류 기반 기계학습의 정신과 진단 예측 적용)

  • Pak, Doohyun;Hwang, Mingyu;Lee, Minji;Woo, Sung-Il;Hahn, Sang-Woo;Lee, Yeon Jung;Hwang, Jaeuk
    • Korean Journal of Biological Psychiatry
    • /
    • v.27 no.1
    • /
    • pp.18-26
    • /
    • 2020
  • Objectives The aim was to find effective vectorization and classification models to predict a psychiatric diagnosis from text-based medical records. Methods Electronic medical records (n = 494) of present illness were collected retrospectively in inpatient admission notes with three diagnoses of major depressive disorder, type 1 bipolar disorder, and schizophrenia. Data were split into 400 training data and 94 independent validation data. Data were vectorized by two different models such as term frequency-inverse document frequency (TF-IDF) and Doc2vec. Machine learning models for classification including stochastic gradient descent, logistic regression, support vector classification, and deep learning (DL) were applied to predict three psychiatric diagnoses. Five-fold cross-validation was used to find an effective model. Metrics such as accuracy, precision, recall, and F1-score were measured for comparison between the models. Results Five-fold cross-validation in training data showed DL model with Doc2vec was the most effective model to predict the diagnosis (accuracy = 0.87, F1-score = 0.87). However, these metrics have been reduced in independent test data set with final working DL models (accuracy = 0.79, F1-score = 0.79), while the model of logistic regression and support vector machine with Doc2vec showed slightly better performance (accuracy = 0.80, F1-score = 0.80) than the DL models with Doc2vec and others with TF-IDF. Conclusions The current results suggest that the vectorization may have more impact on the performance of classification than the machine learning model. However, data set had a number of limitations including small sample size, imbalance among the category, and its generalizability. With this regard, the need for research with multi-sites and large samples is suggested to improve the machine learning models.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

A Word Embedding used Word Sense and Feature Mirror Model (단어 의미와 자질 거울 모델을 이용한 단어 임베딩)

  • Lee, JuSang;Shin, JoonChoul;Ock, CheolYoung
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • Word representation, an important area in natural language processing(NLP) used machine learning, is a method that represents a word not by text but by distinguishable symbol. Existing word embedding employed a large number of corpora to ensure that words are positioned nearby within text. However corpus-based word embedding needs several corpora because of the frequency of word occurrence and increased number of words. In this paper word embedding is done using dictionary definitions and semantic relationship information(hypernyms and antonyms). Words are trained using the feature mirror model(FMM), a modified Skip-Gram(Word2Vec). Sense similar words have similar vector. Furthermore, it was possible to distinguish vectors of antonym words.

Related Documents Classification System by Similarity between Documents (문서 유사도를 통한 관련 문서 분류 시스템 연구)

  • Jeong, Jisoo;Jee, Minkyu;Go, Myunghyun;Kim, Hakdong;Lim, Heonyeong;Lee, Yurim;Kim, Wonil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.77-86
    • /
    • 2019
  • This paper proposes using machine-learning technology to analyze and classify historical collected documents based on them. Data is collected based on keywords associated with a specific domain and the non-conceptuals such as special characters are removed. Then, tag each word of the document collected using a Korean-language morpheme analyzer with its nouns, verbs, and sentences. Embedded documents using Doc2Vec model that converts documents into vectors. Measure the similarity between documents through the embedded model and learn the document classifier using the machine running algorithm. The highest performance support vector machine measured 0.83 of F1-score as a result of comparing the classification model learned.

Recommendation System for Research Field of R&D Project Using Machine Learning (머신러닝을 이용한 R&D과제의 연구분야 추천 서비스)

  • Kim, Yunjeong;Shin, Donggu;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1809-1816
    • /
    • 2021
  • In order to identify the latest research trends using data related to national R&D projects and to produce and utilize meaningful information, the application of automatic classification technology was also required in the national R&D information service, so we conducted research to automatically classify and recommend research field. About 450,000 cases of national R&D project data from 2013 to 2020 were collected and used for learning and evaluation. A model was selected after data pre-processing, analysis, and performance analysis for valid data among collected data. The performance of Word2vec, GloVe, and fastText was compared for the purpose of deriving the optimal model combination. As a result of the experiment, the accuracy of only the subcategories used as essential items of task information is 90.11%. This model is expected to be applicable to the automatic classification study of other classification systems with a hierarchical structure similar to that of the national science and technology standard classification research field.

A Study on Fraud Detection in the C2C Used Trade Market Using Doc2vec

  • Lim, Do Hyun;Ahn, Hyunchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • In this paper, we propose a machine learning model that can prevent fraudulent transactions in advance and interpret them using the XAI approach. For the experiment, we collected a real data set of 12,258 mobile phone sales posts from Joonggonara, a major domestic online C2C resale trading platform. Characteristics of the text corresponding to the post body were extracted using Doc2vec, dimensionality was reduced through PCA, and various derived variables were created based on previous research. To mitigate the data imbalance problem in the preprocessing stage, a complex sampling method that combines oversampling and undersampling was applied. Then, various machine learning models were built to detect fraudulent postings. As a result of the analysis, LightGBM showed the best performance compared to other machine learning models. And as a result of SHAP, if the price is unreasonably low compared to the market price and if there is no indication of the transaction area, there was a high probability that it was a fraudulent post. Also, high price, no safe transaction, the more the courier transaction, and the higher the ratio of 0 in the price also led to fraud.

Enhancing the performance of code-clone detection tools using code2vec (code2vec을 이용한 유사도 감정 도구의 성능 개선)

  • Um, Taeho;Hong, Sung Moon;Yang, Joon Hyuk;Jang, Hyo Seok;Doh, Kyung-Goo
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • Plagiarism refers to the act of using the original data as if it were one's own without revealing the source. The plagiarism of source code causes a variety of problems, including legal disputes. Plagiarism in software projects is usually determined by measuring similarity by comparing every pair of source code within two projects. However, blindly comparing every pair has been a huge computational burden, causing a major factor of not using tools of better accuracy. If we can only compare pairs that are probable to be clones, eliminating pairs that are impossible to be clones, we can concentrate more on improving the accuracy of detection. In this paper, we propose a method of selecting highly probable candidates of clone pairs by pre-classifying suspected source-codes using a machine-learning model called code2vec.