• 제목/요약/키워드: VEC Model

검색결과 153건 처리시간 0.036초

딥러닝과 Char2Vec을 이용한 문장 유사도 판별 (The Sentence Similarity Measure Using Deep-Learning and Char2Vec)

  • 임근영;조영복
    • 한국정보통신학회논문지
    • /
    • 제22권10호
    • /
    • pp.1300-1306
    • /
    • 2018
  • 본 연구는 자연어 처리 문제 중 하나인 문장 유사도 판별 문제를 딥러닝으로 해결하는 데에 있어 Char2Vec기반으로 문장을 전 처리하고 학습시켜 그 성능을 확인하고 대표적인 Word Embedding 모델 Word2Vec를 대체할 수 있는 가능성이 있는지 파악하고자 한다. 임의의 두 문장을 비교할 때 쓰는 딥러닝 구조로 Siamese Ma-STM 네트워크를 사용하였다. Word2Vec와 Char2Vec를 각각 기반으로 한 문장 유사도 판별 모델을 학습시키고 그 결과를 분석하였다. 실험 결과 Char2Vec를 기반으로 학습시킨 모델이 validation accuracy 75.1%을 보였고 Word2Vec를 기반으로 학습시킨 모델은 validation accuracy 71.6%를 보였다. 따라서 고 사양을 요구하는 Word2Vec대신 임베딩 레이어를 활용한 Char2Vec 기반의 전처리 모델을 활용함으로 분석 환경을 최적화 할 수 있다.

Doc2Vec과 Word2Vec을 활용한 Convolutional Neural Network 기반 한국어 신문 기사 분류 (Categorization of Korean News Articles Based on Convolutional Neural Network Using Doc2Vec and Word2Vec)

  • 김도우;구명완
    • 정보과학회 논문지
    • /
    • 제44권7호
    • /
    • pp.742-747
    • /
    • 2017
  • 본 논문에서는 문장의 분류에 있어 성능이 입증된 word2vec을 활용한 Convolutional Neural Network(CNN) 모델을 기반으로 하여 문서 분류에 적용 시 성능을 향상시키기 위해 doc2vec을 함께 CNN에 적용하고 기반 모델의 구조를 개선한 문서 분류 방안을 제안한다. 먼저 토큰화 방법을 선정하기 위한 초보적인 실험을 통하여, 어절 단위, 형태소 분석, Word Piece Model(WPM) 적용의 3가지 방법 중 WPM이 분류율 79.5%를 산출하여 문서 분류에 유용함을 실증적으로 확인하였다. 다음으로 WPM을 활용하여 생성한 단어 및 문서의 벡터 표현을 기반 모델과 제안 모델에 입력하여 범주 10개의 한국어 신문 기사 분류에 적용한 실험을 수행하였다. 실험 결과, 제안 모델이 분류율 89.88%를 산출하여 기반 모델의 분류율 86.89%보다 2.99% 향상되고 22.80%의 개선 효과를 보였다. 본 연구를 통하여, doc2vec이 동일한 범주에 속한 문서들에 대하여 유사한 문서 벡터 표현을 생성하기 때문에 문서의 분류에 doc2vec을 함께 활용하는 것이 효과적임을 검증하였다.

Doc2Vec을 활용한 CNN기반 한국어 신문기사 분류에 관한 연구 (A Study on Categorization of Korean News Article based on CNN using Doc2Vec)

  • 김도우;구명완
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.67-71
    • /
    • 2016
  • 본 논문에서는 word2vec과 doc2vec을 함께 CNN에 적용한 문서 분류 방안을 제안한다. 먼저 어절, 형태소, WPM(Word Piece Model)을 각각 사용하여 생성한 토큰(token)으로 doc2vec을 활용하여 문서를 vector로 표현한 후, 초보적인 문서 분류에 적용한 결과 WPM이 분류율 79.5%가 되어 3가지 방법 중 최고 성능을 보였다. 다음으로 CNN의 입력자질로써 WPM을 이용하여 생성한 토큰을 활용한 word2vec을 범주 10개의 문서 분류에 사용한 실험과 doc2vec을 함께 사용한 실험을 수행하였다. 실험 결과 word2vec만을 활용하였을 때 86.89%의 분류율을 얻었고, doc2vec을 함께 적용한 결과 89.51%의 분류율을 얻었다. 따라서 제안한 모델을 통해서 분류율이 2.62% 향상됨을 확인하였다.

  • PDF

Doc2Vec을 활용한 CNN기반 한국어 신문기사 분류에 관한 연구 (A Study on Categorization of Korean News Article based on CNN using Doc2Vec)

  • 김도우;구명완
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.67-71
    • /
    • 2016
  • 본 논문에서는 word2vec과 doc2vec을 함께 CNN에 적용한 문서 분류 방안을 제안한다. 먼저 어절, 형태소, WPM(Word Piece Model)을 각각 사용하여 생성한 토큰(token)으로 doc2vec을 활용하여 문서를 vector로 표현한 후, 초보적인 문서 분류에 적용한 결과 WPM이 분류율 79.5%가 되어 3가지 방법 중 최고 성능을 보였다. 다음으로 CNN의 입력자질로써 WPM을 이용하여 생성한 토큰을 활용한 word2vec을 범주 10개의 문서 분류에 사용한 실험과 doc2vec을 함께 사용한 실험을 수행하였다. 실험 결과 word2vec만을 활용하였을 때 86.89%의 분류율을 얻었고, doc2vec을 함께 적용한 결과 89.51%의 분류율을 얻었다. 따라서 제안한 모델을 통해서 분류율이 2.62% 향상됨을 확인하였다.

  • PDF

Tag2vec 기반의 지능형 불법 도박 사이트 탐지 모형 개발 (Development of an Intelligent Illegal Gambling Site Detection Model Based on Tag2Vec)

  • 송찬우;안현철
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.211-227
    • /
    • 2022
  • 오늘날 온라인 도박 사이트를 통한 불법 도박이 큰 사회문제가 되고 있다. 인터넷 기술의 발전과 스마트폰 보급으로 시공간의 제약이 사라지고 불법 온라인 도박을 누구나 쉽게 접근할 수 있게 되었기 때문이다. 이를 막기 위해 국내에서는 자체 모니터 요원의 탐지, '누리캅스'와 같은 제보 시스템 등을 활용해 불법 사이트를 탐지하고 있지만 이러한 수동적인 프로세스로는 인력부족 같은 한계로 모든 불법 사이트를 탐지하기 어려운 실정이다. 이에 여러 학자들이 인공지능 기반의 자동 불법 도박 사이트 탐지 기술을 연구해왔다. Xu et al. (2019)은 가짜 사이트들의 HTML Tag 구조에는 차별적인 특징이 있다는 점을 발견하였다. 이는 HTML Tag 구조가 불법 사이트를 탐지하는데 주요한 특징정보가 될 수 있음을 시사하지만, 불법 사이트 탐지 모델에 HTML Tag 구조를 반영하여 모형의 성능을 제고하고자 하는 연구는 지금까지 거의 시도되지 않았다. 이러한 배경에서 본 연구는 HTML Tag 구조를 특징화하여 모형의 성능을 향상시키고자 하였고, HTML Tag 구조를 적절하게 벡터화하기 위한 방법론으로 Doc2Vec을 변형한 Tag2Vec을 제안한다. Tag2Vec 기반 모델의 효과를 검증하기 위해 '더 치트'의 유해 사이트 목록과 Google 검색을 통한 정상 사이트 목록을 데이터 세트로 활용하여 실증분석을 수행하였다. 그 결과 비교 모델로 설정된 URL 기반 탐지 모델보다 본 연구에서 제안하는 Tag2Vec 기반 탐지 모델이 분류 정확도, Recall, F1_Score에서 모두 향상된 성능을 보임을 확인할 수 있었다. 이러한 본 연구의 제안모델은 향후 지능형 기술을 통해 우리 사회의 건강도를 제고하는데 효과적으로 활용될 수 있을 것으로 기대된다.

인접성 벡터를 이용한 트리플 지식 그래프의 임베딩 모델 개선 (Improving Embedding Model for Triple Knowledge Graph Using Neighborliness Vector)

  • 조새롬;김한준
    • 한국전자거래학회지
    • /
    • 제26권3호
    • /
    • pp.67-80
    • /
    • 2021
  • 그래프 표현 학습을 위한 노드 임베딩 기법은 그래프 마이닝에서 양질의 결과를 얻는 데 중요한 역할을 한다. 지금까지 대표적인 노드 임베딩 기법은 동종 그래프를 대상으로 연구되었기에, 간선 별로 고유한 의미를 갖는 지식 그래프를 학습하는 데 어려움이 있었다. 이러한 문제를 해결하고자, 기존 Triple2Vec 기법은 지식 그래프의 노드 쌍과 간선을 하나의 노드로 갖는 트리플 그래프를 학습하여 임베딩 모델을 구축한다. 하지만 Triple2Vec 임베딩 모델은 트리플 노드 간 관련성을 단순한 척도로 산정하기 때문에 성능을 높이는데 한계를 가진다. 이에 본 논문은 Triple2Vec 임베딩 모델을 개선하기 위한 그래프 합성곱 신경망 기반의 특징 추출 기법을 제안한다. 제안 기법은 트리플 그래프의 인접성 벡터(Neighborliness Vector)를 추출하여 트리플 그래프에 대해 노드 별로 이웃한 노드 간 관계성을 학습한다. 본 논문은 DBLP, DBpedia, IMDB 데이터셋을 활용한 카테고리 분류 실험을 통해, 제안 기법을 적용한 임베딩 모델이 기존 Triple2Vec 모델보다 우수함을 입증한다.

Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 시스템의 정확도 개선에 관한 연구 (A Study on the Accuracy Improvement of Movie Recommender System Using Word2Vec and Ensemble Convolutional Neural Networks)

  • 강부식
    • 디지털융복합연구
    • /
    • 제17권1호
    • /
    • pp.123-130
    • /
    • 2019
  • 웹 추천기법에서 가장 많이 사용하는 방식 중의 하나는 협업필터링 기법이다. 협업필터링 관련 많은 연구에서 정확도를 개선하기 위한 방안이 제시되어 왔다. 본 연구는 Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 방안에 대해 제안한다. 먼저 사용자, 영화, 평점 정보에서 사용자 문장과 영화 문장을 구성한다. 사용자 문장과 영화 문장을 Word2Vec에 입력으로 넣어 사용자 벡터와 영화 벡터를 구한다. 사용자 벡터는 사용자 합성곱 모델에 입력하고, 영화 벡터는 영화 합성곱 모델에 입력한다. 사용자 합성곱 모델과 영화 합성곱 모델은 완전연결 신경망 모델로 연결된다. 최종적으로 완전연결 신경망의 출력 계층은 사용자 영화 평점의 예측값을 출력한다. 실험결과 전통적인 협업필터링 기법과 유사 연구에서 제안한 Word2Vec과 심층 신경망을 사용한 기법에 비해 본 연구의 제안기법이 정확도를 개선함을 알 수 있었다.

LDA2Vec 항목 모델을 기반으로 한 협업 필터링 권장 알고리즘 (Collaborative Filtering Recommendation Algorithm Based on LDA2Vec Topic Model)

  • 장흠
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.385-386
    • /
    • 2020
  • In this paper, we propose a collaborative filtering recommendation algorithm based on the LDA2Vec topic model. By extracting and analyzing the article's content, calculate their semantic similarity then combine the traditional collaborative filtering algorithm to recommend. This approach may promote the system's recommend accuracy.

  • PDF

학습률 향상을 위한 딥러닝 기반 맞춤형 문제 추천 알고리즘 (Deep learning-based custom problem recommendation algorithm to improve learning rate)

  • 임민아;황승연;김정준
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.171-176
    • /
    • 2022
  • 최근 딥러닝 기술의 발전과 함께 추천 시스템의 영역도 다양해졌다. 본 논문은 학습률 향상을 위한 알고리즘을 연구하였으며 Word2Vec 모델의 성능 특징과 비교를 통해 단어에 따른 유의어 결과를 연구하였다. 문제 추천 알고리즘은 Word2Vec 모델의 특징인 텍스트 간 의미 반영 및 유사성 테스트를 통해 표현된 값으로 구현됐다. Word2Vec 의 학습 결과를 통해 텍스트 유사도 값을 이용해 문제 추천을 진행하였으며 유사도가 높은 문제를 추천할 수 있다. 실험 과정에서 정량적인 데이터양으로는 정확성이 낮아지는 결과를 보았으며 데이터 셋의 데이터양이 방대할수록 정확성을 높일 수 있음을 확인하였다.

Doc2Vec 모형에 기반한 자기소개서 분류 모형 구축 및 실험 (Self Introduction Essay Classification Using Doc2Vec for Efficient Job Matching)

  • 김영수;문현실;김재경
    • 한국IT서비스학회지
    • /
    • 제19권1호
    • /
    • pp.103-112
    • /
    • 2020
  • Job seekers are making various efforts to find a good company and companies attempt to recruit good people. Job search activities through self-introduction essay are nowadays one of the most active processes. Companies spend time and cost to reviewing all of the numerous self-introduction essays of job seekers. Job seekers are also worried about the possibility of acceptance of their self-introduction essays by companies. This research builds a classification model and conducted an experiments to classify self-introduction essays into pass or fail using deep learning and decision tree techniques. Real world data were classified using stratified sampling to alleviate the data imbalance problem between passed self-introduction essays and failed essays. Documents were embedded using Doc2Vec method developed from existing Word2Vec, and they were classified using logistic regression analysis. The decision tree model was chosen as a benchmark model, and K-fold cross-validation was conducted for the performance evaluation. As a result of several experiments, the area under curve (AUC) value of PV-DM results better than that of other models of Doc2Vec, i.e., PV-DBOW and Concatenate. Furthmore PV-DM classifies passed essays as well as failed essays, while PV_DBOW can not classify passed essays even though it classifies well failed essays. In addition, the classification performance of the logistic regression model embedded using the PV-DM model is better than the decision tree-based classification model. The implication of the experimental results is that company can reduce the cost of recruiting good d job seekers. In addition, our suggested model can help job candidates for pre-evaluating their self-introduction essays.