• Title/Summary/Keyword: VDVI

Search Result 2, Processing Time 0.02 seconds

Assessing Stream Vegetation Dynamics and Revetment Impact Using Time-Series RGB UAV Images and ResNeXt101 CNNs

  • Seung-Hwan Go;Kyeong-Soo Jeong;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • Small streams, despite their rich ecosystems, face challenges in vegetation assessment due to the limitations of traditional, time-consuming methods. This study presents a groundbreaking approach, combining unmanned aerial vehicles(UAVs), convolutional neural networks(CNNs), and the vegetation differential vegetation index (VDVI), to revolutionize both assessment and management of stream vegetation. Focusing on Idong Stream in South Korea (2.7 km long, 2.34 km2 basin area)with eight diverse revetment methods, we leveraged high-resolution RGB images captured by UAVs across five dates (July-December). These images trained a ResNeXt101 CNN model, achieving an impressive 89% accuracy in classifying vegetation cover(soil,water, and vegetation). This enabled detailed spatial and temporal analysis of vegetation distribution. Further, VDVI calculations on classified vegetation areas allowed assessment of vegetation vitality. Our key findings showcase the power of this approach:(a) TheCNN model generated highly accurate cover maps, facilitating precise monitoring of vegetation changes overtime and space. (b) August displayed the highest average VDVI(0.24), indicating peak vegetation growth crucial for stabilizing streambanks and resisting flow. (c) Different revetment methods impacted vegetation vitality. Fieldstone sections exhibited initial high vitality followed by decline due to leaf browning. Block-type sections and the control group showed a gradual decline after peak growth. Interestingly, the "H environment block" exhibited minimal change, suggesting potential benefits for specific ecological functions.(d) Despite initial differences, all sections converged in vegetation distribution trends after 15 years due to the influence of surrounding vegetation. This study demonstrates the immense potential of UAV-based remote sensing and CNNs for revolutionizing small-stream vegetation assessment and management. By providing high-resolution, temporally detailed data, this approach offers distinct advantages over traditional methods, ultimately benefiting both the environment and surrounding communities through informed decision-making for improved stream health and ecological conservation.

Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Classification Upland Crop in Small Scale Agricultural Land (무인항공기와 딥러닝(UNet)을 이용한 소규모 농지의 밭작물 분류)

  • Choi, Seokkeun;Lee, Soungki;Kang, Yeonbin;Choi, Do Yeon;Choi, Juweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.671-679
    • /
    • 2020
  • In order to increase the food self-sufficiency rate, monitoring and analysis of crop conditions in the cultivated area is important, and the existing measurement methods in which agricultural personnel perform measurement and sampling analysis in the field are time-consuming and labor-intensive for this reason inefficient. In order to overcome this limitation, it is necessary to develop an efficient method for monitoring crop information in a small area where many exist. In this study, RGB images acquired from unmanned aerial vehicles and vegetation index calculated using RGB image were applied as deep learning input data to classify complex upland crops in small farmland. As a result of each input data classification, the classification using RGB images showed an overall accuracy of 80.23% and a Kappa coefficient of 0.65, In the case of using the RGB image and vegetation index, the additional data of 3 vegetation indices (ExG, ExR, VDVI) were total accuracy 89.51%, Kappa coefficient was 0.80, and 6 vegetation indices (ExG, ExR, VDVI, RGRI, NRGDI, ExGR) showed 90.35% and Kappa coefficient of 0.82. As a result, the accuracy of the data to which the vegetation index was added was relatively high compared to the method using only RGB images, and the data to which the vegetation index was added showed a significant improvement in accuracy in classifying complex crops.