For developing automotive parts and telematics devices the real car test often shows limitation because it needs high cost, much time and has the possibility of the accident. Therefore, a Vehicle Driving Simulator (VDS) instead of the real-car test has been used by some automotive manufactures, research centers, and universities. The VDS is a virtual reality device which makes a human being feel as if one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, a washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, a classical washout algorithm contains several problems such as time delay and generation of wrong motion signal caused by characteristics of filters. Specially, the classical washout algorithm has the simulator sickness when driver hardly turns brakes and accelerates the VDS. In this paper, a new washout algorithm is developed to enhance the motion sensitivity and improve the simulator sickness by using the vehicle tilt signal which is generated in the real time vehicle dynamic model.
The role of Intelligent Transportation System (ITS) is to efficiently manipulate the traffic flow and reduce the cost in logistics by using the state of the art technologies which combine telecommunication, sensor, and control technology. Especially, the hardware part of ITS is rapidly adapting to the up-to-date techniques in GPS and telematics to provide essential raw data to the controllers. However, the software part of ITS needs more sophisticated techniques to take care of vast amount of on-line data to be analyzed by the controller for their decision makings. In this paper, the authors develop a traffic congestion prediction model based on several different parameters from the sensory data captured in the Vehicle Detection System (VDS). This model uses the neural network technology in analyzing the traffic flow and predicting the traffic congestion in the designated area. This model also validates the results by analyzing the errors between actual traffic data and prediction program.
본 연구는 도로 기상정보 시스템(RWIS : Road Weather Information System)에서 수집되는 시정거리와 차량검지기(VDS : Vehicle Detection System)에서 수집되는 속도 자료를 이용하여 교통류 안전성을 판단하였다. 교통류의 안전성 측면에서 시정거리(VD : Visibility Distance)가 정지시거(SSD : Stopping Sight Distance)보다 길어야 이벤트 발생 시 안전하게 정지하거나 위험한 상황을 회피할 수 있다. 운전자에게 사고예방을 위한 능동적 대응이 가능하도록 하는 가치있는 정보를 제공하기 위해 최근접이웃 예측기법(KNN : K-Nearest Neighbors Method)을 활용하였다. 또한, 교통류 안전성에 대한 운전자의 이해도 증진 및 객관성을 위하여 안전성 지표(LOHSI : Level of Hazardous Spacing Index)를 제시하였다. 본 연구결과는 교통류의 안전성 향상을 위한 효율적인 교통운영을 지원 할 수 있을 것이다.
본 연구에서는 CA(Cellular Automata)규칙을 이용하여, 돌발상황의 영향을 분석할 수 있는 시뮬레이션 모형을 구축하고, 실시간 자료인 VDS 자료와 현장측정 자료를 이용하여 시뮬레이션 모형을 검증하였다. 이렇게 구축된 시뮬레이션 모형을 이용하여, 고속도로상에서 돌발상황이 발생하였을 때의 영향을 분석하였다. 그 결과는 5% 신뢰구간에서 통계적으로 유의함으로 나타났다. 돌발상황의 영향을 분석하기 위해서 돌발상황의 지속시간과 교통량의 변화에 따른 돌발상황의 유형을 분류하였고, 각각의 돌발상황 유형에 따른 영향을 분석하였다. 이때 돌발상황에 의한 영향은 구간 통행시간의 변화와 혼잡 지체시간의 변화를 통해서 분석하였다. 결과에 따르면, 교통량이 적을 때는 교통류가 돌발상황에 의해서 거의 영향을 받지 않았고, 교통량이 증가함에 따라, 돌발상황에 의한 영향이 점점 더 커지는 것으로 나타났다. 또한, 교통량이 2000대/시를 넘어설 때는 돌발상황이 발생하지 않더라도, 교통량의 증가에 따라 혼잡지체가 자연스럽게 발생하는 것으로 나타났고, 돌발상황이 45분 동안 계속될 경우에는 약 425∼722대·시의 지체가 발생하였다.
운전자가 원하는 통행시간 예측 정보를 제공하기 위해서는 이미 알고 있는 교통상황 하에서의 통행시간 추정이 선행되어야 한다. 그러나 현재 고속도로에 적용되고 있는 지점검지기에 의한 통행시간 추정 방법은 신뢰성 있는 통행시간을 산출하기에는 한계가 있다. 따라서 본 연구에서는 신뢰성 있는 예측정보를 제공하기 위한 기반 결과로서 고속도로 경로의 기 종점 영업소 간에서 실제 소요된 통행시간의 추정에 주안점을 두었다. 통행시간 추정시 교통정보의 활용도 측면에서 매우 유용하면서도 풍부한 고속도로 통행료 수납시스템 (Toll Collection System, TCS) 자료를 이용하였다. 경로통행시간 추정모형에서는 경로 내의 링크통행시간을 조합하여 고속도로의 경로통행시간을 추정하였다. TCS 자료가 결측 된 경우에는 통행시간의 증가패턴을 분석하여 선형보간법을 통해 이전주기의 TCS 통행시간을 참조하였다. 결측이 장기간 지속되거나 통행시간의 변동이 심한 전이시간대에는 VDS 시공도에 의한 동적인 통행시간을 추정하였다. 본 연구에서 제안한 모형을 통해 추정된 경로의 통행시간은 경로를 직접 통행한 차량들의 통행시간과 통계적으로 차이가 없음이 검증되었다. 제안모형은 동일 출발 시간대에서는 통행시간의 편차가 심하고 전 후 시간대에서는 통행시간 대푯값의 변화 패턴이 불규칙한 장거리 구간에 대해 신뢰성 있는 통행시간을 추정할 수 있었다. 본 연구에서 추정된 통행시간은 교통 상황의 성능 지표 및 실시간 통행시간 예측 분야에 활용될 수 있을 것으로 기대된다.
도로이동 오염원 대기환경 빅데이터는 상시 교통량 조사장비인 AVC, VDS, WIM, DTG를 활용한 차종, 속도, 하중 등 실시간 교통류 데이터와 GIS를 활용한 도로형상(오르막, 내리막, 회전구간) 데이터를 연계한 교통류 데이터로 구성되어 있다. 또한, 일반적인 데이터와 달리 단위시간 당 데이터가 많이 발생하고, 다양한 포맷을 가지고 있다. 특히, 이들 상세 교통류 정보로 수집되는 대용량의 실시간 데이터들은 약 총 740만 건/시간 이상이 수집되어 저장 및 가공되기 때문에 효율적으로 데이터를 처리할 수 있는 시스템이 필요하다. 따라서 본 연구에서는 도로이동 오염뭔 대기환경 빅데이터 시각화를 위한 오픈소스 기반의 데이터 병렬처리 성능 최적화 연구를 수행한다.
본 연구에서는 개별 차량의 차두 시간(time headway) 정보를 활용하여 고속도로 환경에서의 단일 링크에 대한 교통류 모형(flow-density diagram)을 추정하는 방법에 대해 탐구한다. 차두 시간 기반 교통류 모형(empirical flow-density diagram) 연구를 위해 차량용 비전 센서가 탑재된 실험 차량에서 9개월동안 수집된 데이터의 전처리 및 GIS 기반 맵 매칭을 수행한다. 기존의 교통류 모델식을 활용한 차두 시간 기반 교통류 모형(empirical flow-density diagram)의 검증을 위해, 차량 검지기 기반의 VDS(Vehicle Detection System) 데이터(loop detection traffic data) 기반 교통류 모형과 결과 비교 및 분석을 수행한다. 차두 시간 기반 교통류 모형의 추정 오차 원인을 분석하기 위해 각 교통류 모형의 차두 시간 및 차두 거리의 확률분포와 단위시간 교통량과 차량 밀도의 표준편차를 활용하였다. 분석 결과 링크 내 제한된 샘플 차량 대수 및 수집 데이터에 대한 주행환경 편향성이 추정 오차의 주된 요인이며. 이에 따른 추정 오차 개선을 위한 방법에 대해 제안한다.
인공 지능이 발전함에 따라 예측 시스템은 우리의 삶에 필수적인 기술 중 하나로 자리를 잡았다. 이러한 기술의 성장에도 불구하고, 21세기 사거리 교통 체증은 계속해서 문제 되어 왔다. 본 논문에서는 Conv-LSTM(: Convolutional-Long Short-Term Memory) 알고리즘을 이용한 사거리 교통 체증 예측 시스템을 제안한다. 제안한 시스템은 교통 체증이 발생하는 사거리에 시간대별 교통 정보를 학습한 데이터를 모델링 한다. 시간의 흐름에 따라 기록된 교통량 데이터로 교통 체증을 예측하며. 예측된 결과를 기반으로 사거리 교통 신호를 제어하고, 일정한 교통량으로 유지한다. VDS(: Vehicle Detection System)센서를 활용하여 도로 혼잡도 데이터를 정의하고, 교통을 원활하게 하기 위하여 각각의 교차로를 Conv-LSTM 알고리즘기반 네트워크 시스템으로 구성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.