• Title/Summary/Keyword: VAPs(valence alternation pairs)

Search Result 2, Processing Time 0.014 seconds

The Properties of Photoinduced Birefringence in Chalcogenide Thin Films by the Electric Field Effects (전계효과에 의한 칼코게나이드 박막에서의 광유기 복굴절 특성)

  • 장선주;박종화;여철호;정홍배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.58-63
    • /
    • 2001
  • We have investigated the photoinduced birefrinence by the electric field effects in chalcogenide thin films. The electric field effects have investigated the various applied bias voltages(forward and reverse) in chalcogenide thin films. A pumping (inducing) and a probing bean were using a linearly polarized He-Ne laser light (633nm) and semiconductor laser light (780nm), respectively. The result was shown that the birefringence had a higher value in DC +2V than the others, Also, we obtained the birefringence in the electric field effects by various voltages. In addition, we have discussed the anisotropy property of chalcogenide thin films by the electric field effects.

  • PDF

The properties of diffraction efficiency in polarization holography using the chalcogenide thin films by the electric field effects. (칼코게나이드 박막에서 전계효과에 의한 편광 홀로그래피 회절효율 특성)

  • 장선주;여철호;박정일;정홍배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.791-795
    • /
    • 2000
  • Amorphous chalcogenide glasses have a wide variety of light-induced effects. In this study, we have investigated the diffraction efficiency of chalcogenide. As$_{40}$ Ge$_{10}$ Se$_{15}$ S$_{35}$ thin films by the various applied electric fields. The holographic grating in these thin films has been formed using a linearly polarized He-Ne laser light (633nm). The diffraction efficiency was investigated the two method of applied electric field in the perpendicular and parallel to the direction of inducing beam. We obtained that properties of diffraction efficiency in the two methods of applied electric field. The result is shown that the diffraction efficiency of parallel electric field is 285% increase, η=1.1$\times$10$^{-3}$ and the diffraction efficiency of perpendicular electric field is 80% decrease, η=9.83$\times$10$^{-5}$ . Also, we have investigated the anisotropy property on chalcogenide thin films by the electric field effects.

  • PDF