• Title/Summary/Keyword: VANET Security

Search Result 84, Processing Time 0.028 seconds

Cryptanalysis of an Identity-Based Message Authentication Scheme in VANETs (신원기반의 차량통신망 메시지 인증 스킴에 대한 안전성 분석)

  • Ryu, Eun-Kyung;Lee, Sung-Woon;Yoo, Kee-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.167-172
    • /
    • 2013
  • In a paper recently published in the International Journal of Parallel, Emergent and Distributed Systems, Biswas et al. proposed a VANET message authentication scheme which uses an identity-based proxy signature mechanism as an underlying primitive. The authors claimed that their scheme supports various security features including the security of proxy-key, the security against message forgery and the security against replay attack, with non-repudiation and resistance to proxy-key compromise. Here, we show how an active attacker, who has no knowledge of an original message sender's private key, can compute the proxy-signature key of the corresponding message sender, meaning that the scheme is completely insecure. We also suggest an enhanced version of the protocol capable of solving such serious security holes.

A Design of Traceable and Privacy-Preserving Authentication in Vehicular Networks (VANET 환경에서 프라이버시를 보호하면서 사고 발생 시 추적 가능한 인증 프로토콜)

  • Kim, Sung-Hoon;Kim, Bum-Han;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.115-124
    • /
    • 2008
  • In vehicular networks, vehicles should be able to authenticate each other to securely communicate with network-based infrastructure, and their locations and identifiers should not be exposed from the communication messages. however, when an accident occurs, the investigating authorities have to trace down its origin. As vehicles communicate not only with RSUs(Road Side Units) but also with other vehicles, it is important to minimize the number of communication flows among the vehicles while the communication satisfies the several security properties such as anonymity, authenticity, and traceability. In our paper, when the mutual authentication protocol is working between vehicles and RSUs, the protocol offers the traceability with privacy protection using pseudonym and MAC (Message Authentication Code) chain. And also by using MAC-chain as one-time pseudonyms, our protocol does not need a separate way to manage pseudonyms.

A Design of Framework for Secure Communication in Vehicular Cloud Environment (차량 클라우드 환경에서 안전한 통신을 위한 프레임워크 설계)

  • Park, Jung-oh;Choi, Do-hyeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2114-2120
    • /
    • 2015
  • Vehicle cloud technology is a fusion technology of vehicle communication technology and cloud computing used in wired and wireless Internet, and has attracted attention as a new IT paradigm. It is expected that it would contribute to resolve the road traffic problem with effective communication by providing computer, sensor, communication, device, and resource. but security is necessary to apply vehicle cloud environment and it have to resolve security threats and various attacks occurred in wired and wireless vehicle environment. Therefore, in this paper, we designed security framework to provide secure communication between vehicle and vehicle, and vehicle and the Road side in the vehicle cloud environment. Safety and security of the vehicle environment was satisfied with the security requirements of the vehicle and cloud-based environment, and increased efficiency than the conventional vehicle network communication protocols.

Performance Evaluation for a Unicast Vehicular Delay Tolerant Routing Protocol Networks

  • Abdalla, Ahmed Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.167-174
    • /
    • 2022
  • Vehicular Ad hoc Networks are considered as special kind of Mobile Ad Hoc Networks. VANETs are a new emerging recently developed, advanced technology that allows a wide set of applications related to providing more safety on roads, more convenience for passengers, self-driven vehicles, and intelligent transportation systems (ITS). Delay Tolerant Networks (DTN) are networks that allow communication in the event of connection problems, such as delays, intermittent connections, high error rates, and so on. Moreover, these are used in areas that may not have end-to-end connectivity. The expansion from DTN to VANET resulted in Vehicle Delay Tolerant Networks (VDTN). In this approach, a vehicle stores and carries a message in its buffer, and when the opportunity arises, it forwards the message to another node. Carry-store-forward mechanisms, packets in VDTNs can be delivered to the destination without clear connection between the transmitter and the receiver. The primary goals of routing protocols in VDTNs is to maximize the probability of delivery ratio to the destination node, while minimizing the total end-to-end delay. DTNs are used in a variety of operating environments, including those that are subject to failures and interruptions, and those with high delay, such as vehicle ad hoc networks (VANETs). This paper discusses DTN routing protocols belonging to unicast delay tolerant position based. The comparison was implemented using the NS2 simulator. Simulation of the three DTN routing protocols GeOpps, GeoSpray, and MaxProp is recorded, and the results are presented.

An Efficient Algorithm to Reduce the Broadcast Storm in VANETS

  • Aziz Hanifi;Robab Hamlbarani Haghi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.162-168
    • /
    • 2024
  • VANET (vehicular ad hoc network) refers to the case networks designed for vehicles. Such networks are established among the vehicles which are equipped with communication tools. Within these networks, vehicles are regarded as the network nodes. On time and on schedule transmission of data is of high significance for these networks. In order to accomplish the objective of on-time data transmission, specific electronic equipment is embedded in each vehicle which maintains ad hoc communications among the passengers. Information about traffic, road signs and on-line observation of traffic status can be transmitted via these networks; such data makes it possible for the driver to select the best route to reach his destination. If there are not any infrastructures, two broadcasting approaches can be considered: overflowing and rebroadcasting. The overflowing approach leads to heavy traffic. Hence, the challenge we face is to avoid the broadcasting flood. In this paper, an approach for the management of the broadcasting flood is proposed based on fuzzy theory. The proposed method is assumed to have better performance and efficiency than any other approaches in terms of crash rate, the rate of message success and delay

Issues on Infotainment Application in Vehicular NDN (VNDN 환경하에서 인포테인먼트 응용 이슈)

  • Lee, Heejin;Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.993-999
    • /
    • 2021
  • Recently, many studies on VNDN technology have been conducted to graft Named Data Networking (NDN) into VANET as a core network technology. VNDN can use the content name to deliver various infotainment application content data through name-based forwarding. When VNDN is used as a communication technology for infotainment applications in connected vehicles, it is possible to realize data-centric networking technology in which data is the subject of communication. It can overcome the limitations of connected vehicle infotainment application service technology based on the host-centric current Internet, such as security attack/hacking, performance degradation in long-distance data transmission, frequent data cut-off. In this paper, we present the main functions provided by VNDN technology, and systematically analyze and organize the issues necessary to realize infotainment application services for connected vehicles in the VNDN environment. Based on this, it can be utilized as basic information necessary to establish infotainment application requirements in VNDN environment.

차량네트워크를 위한 프라이버시 보장인증 기술동향분석

  • Yu, Young-Jun;Kim, Yun-Gyu;Kim, Bum-Han;Lee, Dong-Hoon
    • Review of KIISC
    • /
    • v.19 no.4
    • /
    • pp.11-20
    • /
    • 2009
  • 차량네트워크(VANET)는 이동형 에드 혹 네트워크의 가장 유망한 응용환경으로 인식되어 지고 있다. 특히, 차량간의 안전주행 통신인 V2V의 경우 운전자의 안전을 위한 통신기술로 주목받고 있다. 안전주행을 위해서 V2V에서 송수신되는 메시지는 다양한 네트워크 공격을 막기 위해서 반드시 인증이 되어야 하는 반면 운전자의 위치 프라이버시를 보호하기 위해서는 익명성이 보장되어야 한다. 이러한 보안 속성은 V2V 통신만의 고유한 성질로써, 현재 인증과 프라이버시를 동시에 보장하기 위한 인증기술에 대한 연구가 활발히 진행되고 있다. 본 고에서는 프라이버시를 보장하는 V2V 인증 프로트콜들을 분석하고 보안 및 효율성 관점에서 각 프로트콜을 비교분석한다.

A Robust and Efficient Anonymous Authentication Protocol in VANETs

  • Jung, Chae-Duk;Sur, Chul;Park, Young-Ho;Rhee, Kyung-Hyune
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.607-614
    • /
    • 2009
  • Recently, Lu et al. proposed an efficient conditional privacy preservation protocol, named ECPP, based on group signature scheme for generating anonymous certificates from roadside units (RSUs). However, ECPP does not provide unlinkability and traceability when multiple RSUs are compromised. In this paper, we make up for the limitations and propose a robust and efficient anonymous authentication protocol without loss of efficiency as compared with ECPP. Furthermore, in the proposed protocol, RSUs can issue multiple anonymous certificates to an OBU to alleviate system overheads for mutual authentication between OBUs and RSUs. In order to achieve these goals, we consider a universal re-encryption scheme and identity-based key establishment scheme as our building blocks. Several simulations are conducted to verify the efficiency and effectiveness of the proposed protocol by comparing with those of the existing ECPP.

A Beacon-Based Trust Management System for Enhancing User Centric Location Privacy in VANETs

  • Chen, Yi-Ming;Wei, Yu-Chih
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.153-163
    • /
    • 2013
  • In recent years, more and more researches have been focusing on trust management of vehicle ad-hoc networks (VANETs) for improving the safety of vehicles. However, in these researches, little attention has been paid to the location privacy due to the natural conflict between trust and anonymity, which is the basic protection of privacy. Although traffic safety remains the most crucial issue in VANETs, location privacy can be just as important for drivers, and neither can be ignored. In this paper, we propose a beacon-based trust management system, called BTM, that aims to thwart internal attackers from sending false messages in privacy-enhanced VANETs. To evaluate the reliability and performance of the proposed system, we conducted a set of simulations under alteration attacks, bogus message attacks, and message suppression attacks. The simulation results show that the proposed system is highly resilient to adversarial attacks, whether it is under a fixed silent period or random silent period location privacy-enhancement scheme.

A Analysis on Suitability of the Security Algorithms in VANET (차량 보안 통신 알고리즘 적합성 분석)

  • Han, Sun-Hee;Park, Min-Woo;Chung, Tai-Myoung
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.722-725
    • /
    • 2012
  • 차량통신은 차량 내부 단말기 (OBU)를 통해 차량 간 (V2V) 통신을 제공하고, 노변 장치 (RSU)를 통해 차량과 인프라 간 (V2I) 통신을 제공하는 기술이다. 이를 통해 사용자는 교통사고 예방을 위한 서비스, 인터넷 연결 등을 통한 다양한 서비스를 제공받을 수 있다. 하지만 차량 주행 시 통신의 안전성이 보장되지 않는다면 위장공격 및 메시지 변조 공격 등으로 인해 사고를 발생 시킬 수 있다. 따라서 인증 및 무결성 제공 등 차량통신 메시지의 안전성이 보장 되어야 한다. 본 논문에서는 차량통신에서의 보안 서비스를 분석하였고, IEEE 1609.2에 정의된 보안 알고리즘의 요구조건을 만족하는지 분석하여 적합성을 판단하였다.