• Title/Summary/Keyword: VANET Security

Search Result 84, Processing Time 0.032 seconds

Forwarding Protocol Along with Angle Priority in Vehicular Networks (차량 통신망에서 Angle 우선순위를 가진 Forwarding 프로토콜)

  • Yu, Suk-Dea;Lee, Dong-Chun
    • Convergence Security Journal
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • Greedy protocols show good performance in Vehicular Ad-hoc Networks (VANETs) environment in general. But they make longer routes causing by surroundings or turn out routing failures in some cases when there are many traffic signals which generate empty streets temporary, or there is no merge roads after a road divide into two roads. When a node selects the next node simply using the distance to the destination node, the longer route is made by traditional greedy protocols in some cases and sometimes the route ends up routing failure. Most of traditional greedy protocols just take into account the distance to the destination to select a next node. Each node needs to consider not only the distance to the destination node but also the direction to the destination while routing a packet because of geographical environment. The proposed routing scheme considers both of the distance and the direction for forwarding packets to make a stable route. And the protocol can configure as the surrounding environment. We evaluate the performance of the protocol using two mobility models and network simulations. Most of network performances are improved rather than in compared with traditional greedy protocols.

Anonymous Ad Hoc Routing Protocol based on Group Signature (그룹서명에 기반한 익명성을 제공하는 애드 혹 라우팅 프로토콜)

  • Paik, Jung-Ha;Kim, Bum-Han;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.5
    • /
    • pp.15-25
    • /
    • 2007
  • According to augmentation about interesting and demanding of privacy over the rest few years, researches that provide anonymity have been conducted in a number of applications. The ad hoc routing with providing anonymity protects privacy of nodes and also restricts collecting network information to malicious one. Until recently, quite a number of anonymous routing protocols have been proposed, many of them, however, do not make allowance for authentication. Thus, they should be able to have vulnerabilities which are not only modifying packet data illegally but also DoS(denial of service) attack. In this paper, we propose routing protocol with providing both anonymity and authentication in the mobile ad hoc network such as MANET, VANET, and more. This scheme supports all of the anonymity properties which should be provided in Ad Hoc network. In addition, based on the group signature, authentication is also provided for nodes and packets during route discovery phase. Finally, route discovery includes key-agreement between source and destination in order to transfer data securely.

Robust Conditional Privacy-Preserving Authentication based on Pseudonym Root with Cuckoo Filter in Vehicular Ad Hoc Networks

  • Alazzawi, Murtadha A.;Lu, Hongwei;Yassin, Ali A.;Chen, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6121-6144
    • /
    • 2019
  • Numerous privacy-preserving authentication schemes have been proposed but vehicular ad hoc networks (VANETs) still suffer from security and privacy issues as well as computation and communication overheads. In this paper, we proposed a robust conditional privacy-preserving authentication scheme based on pseudonym root with cuckoo filter to meet security and privacy requirements and reduce computation and communication overheads. In our proposed scheme, we used a new idea to generate pseudonyms for vehicles where each on-board unit (OBU) saves one pseudonym, named as "pseudonym root," and generates all pseudonyms from the same pseudonym. Therefore, OBU does not need to enlarge its storage. In addition, the scheme does not use bilinear pairing operation that causes computation overhead and has no certification revocation list that leads to computation and communication overheads. The proposed scheme has lightweight mutual authentication among all parties and just for once. Moreover, it provides strong anonymity to preserve privacy and resists ordinary attacks. We analyzed our proposed scheme and showed that it meets security and privacy requirements of VANETs and is more efficient than traditional schemes. The communication and computation overheads were also discussed to show the cost-effectiveness of the proposed scheme.

An Efficient Anonymous Authentication and Vehicle Tracing Protocol for Secure Vehicular Communications

  • Park, Young-Shin;Jung, Chae-Duk;Park, Young-Ho;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.865-874
    • /
    • 2010
  • Recently, Hao et al. proposed a privacy preservation protocol based on group signature scheme for secure vehicular communications to overcome a well-recognized problems of secure VANETs based on PKI. However, although efficient group signature schemes have been proposed in cryptographic literatures, group signature itself is still a rather much time consuming operation. In this paper, we propose a more efficient privacy preservation protocol than that of Hao et al. In order to design a more efficient anonymous authentication protocol, we consider a key-insulated signature scheme as our cryptographic building block. We demonstrate experimental results to confirm that the proposed protocol is more efficient than the previous scheme.

On Location Security Solutions in Vehicular Ad Hoc Networks

  • Hussain, Rasheed;Son, Junggab;Oh, Heekuck
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.1053-1056
    • /
    • 2012
  • Location information is considered to be of prime importance in Vehicular Ad Hoc NETworks (VANETs) because important decisions are made based on accurate and sound location information. Vehicles exchange their whereabouts in the form of scheduled beacon messages with their neighbors. These messages contain location, speed, time, and lane information etc. In this paper we aim at the location security in VANET and emphasize on the confidentiality and integrity of location information in case of Nonline-of-Sight (NLoS). For location confidentiality we propose a geolock-based mechanism whereas for location integrity we leverage cooperation among neighbors. In case of NLoS, the verifier vehicle asks its one-hop neighbors in an efficient way to verify the claimed location of the node on his behalf. On the basis of trust values and weightage assigned to neighbors, it is decided whether the verification is sound.

Fuzzy Based Multi-Hop Broadcasting in High-Mobility VANETs

  • Basha, S. Karimulla;Shankar, T.N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.165-171
    • /
    • 2021
  • Vehicular Ad hoc Network (VANET) is an extension paradigm of moving vehicles to communicate with wireless transmission devices within a certain geographical limit without any fixed infrastructure. The vehicles have most important participation in this model is usually positioned quite dimly within the certain radio range. Fuzzy based multi-hop broadcast protocol is better than conventional message dissemination techniques in high-mobility VANETs, is proposed in this research work. Generally, in a transmission range the existing number of nodes is obstacle for rebroadcasting that can be improved by reducing number of intermediate forwarding points. The proposed protocol stresses on transmission of emergency message projection by utilization subset of surrounding nodes with consideration of three metrics: inter-vehicle distance, node density and signal strength. The proposed protocol is fuzzy MHB. The method assessment is accomplished in OMNeT++, SUMO and MATLAB environment to prove the efficiency of it.

A Hybrid Method Based on Genetic Algorithm and Ant Colony System for Traffic Routing Optimization

  • Thi-Hau Nguyen;Ha-Nam Nguyen;Dang-Nhac Lu;Duc-Nhan Nguyen
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.85-90
    • /
    • 2023
  • The Ant Colony System (ACS) is a variant of Ant colony optimization algorithm which is well-known in Traveling Salesman Problem. This paper proposed a hybrid method based on genetic algorithm (GA) and ant colony system (ACS), called GACS, to solve traffic routing problem. In the GACS, we use genetic algorithm to optimize the ACS parameters that aims to attain the shortest trips and time through new functions to help the ants to update global and local pheromones. Our experiments are performed by the GACS framework which is developed from VANETsim with the ability of real map loading from open street map project, and updating traffic light in real-time. The obtained results show that our framework acquired higher performance than A-Star and classical ACS algorithms in terms of length of the best global tour and the time for trip.

Secure and Efficient Traffic Information System Utilizing IPFS and Blockchain in Vehicular Ad-hoc Network (Vehicular Ad-hoc Network 환경에서 IPFS와 블록체인을 활용한 안전하고 효율적인 교통정보시스템)

  • Park, Hanwool;Heo, Gabin;Doh, Inshil
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.260-263
    • /
    • 2022
  • 현재의 교통정보시스템은 수집된 정보를 서버에서 가공하여 서비스하는 형태로 이루어져 있다. 이러한 형태는 네트워크 구성이 비교적 단순하고 유지관리 비용이 적게 든다는 장점이 있지만, 반면에 실시간성이 저하되고 보안이 제대로 보장되지 않을 수 있다는 문제가 있으며, 최근 많은 연구가 이루어지고 있는 VANET 환경에서의 교통정보시스템도 broadcast storm의 가능성을 안고 있다. 본 연구에서 제안하는 교통정보시스템은 자동차가 수집한 돌발 상황에 대한 데이터를 RSU(Road Side Unit)가 수신하고, 이후 메시지를 노드들에게 보낼 때 블록체인에 업로드함으로써 보안성과 broadcast storm 문제들을 해결할 수 있으며, raw data 를 IPFS 에 저장하여 시스템 고도화에 사용할 수 있어 참여자들이 교통 상황에 대해 신속하게 대응할 수 있도록 하는 장점을 갖는다.

Machine-to-Machine (M2M) Communications in Vehicular Networks

  • Booysen, M.J.;Gilmore, J.S.;Zeadally, S.;Rooyen, G.J. Van
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.529-546
    • /
    • 2012
  • To address the need for autonomous control of remote and distributed mobile systems, Machine-to-Machine (M2M) communications are rapidly gaining attention from both academia and industry. M2M communications have recently been deployed in smart grid, home networking, health care, and vehicular networking environments. This paper focuses on M2M communications in the vehicular networking context and investigates areas where M2M principles can improve vehicular networking. Since connected vehicles are essentially a network of machines that are communicating, preferably autonomously, vehicular networks can benefit a lot from M2M communications support. The M2M paradigm enhances vehicular networking by supporting large-scale deployment of devices, cross-platform networking, autonomous monitoring and control, visualization of the system and measurements, and security. We also present some of the challenges that still need to be addressed to fully enable M2M support in the vehicular networking environment. Of these, component standardization and data security management are considered to be the most significant challenges.

Privacy Protection Mechanism using MAC Security in VANET (차량 통신에서 MAC Security 기반의 사용자 프라이버시 보호기법)

  • Lim, Hun-Jung;Lee, Jun-Won;Kim, Tae-Kyung;Chung, Tai-Myoung
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.812-815
    • /
    • 2011
  • 통신기술이 발달하면서 차량 통신에 대한 연구가 활발히 진행되고 있다. 주 연구 분야로 라우팅 및 위치정보 기반의 주소 설정과 통신, 보안 문제 해결 등이 있다. 차량은 지극히 개인적인 공간이므로 운전자의 위치 및 식별정보에 대한 보호가 필요하다. 이러한 연구는 운전자 프라이버시 보호 측면에서 보안기능과는 별도로 연구가 진행되고 있다. 기존의 프라이버시 보호 기술들은 각 계층별 프라이버시 보호는 만족하고 있지만, 계층별 정보들의 연결을 통해 프라이버시를 공격하는 연관 공격(Relation Attack)에 대하여서는 취약함을 보이고 있다. 따라서 본 논문에서는 MAC Security 기술을 이용하여 운전자의 프라이버시를 보호하는 기법을 제안하려 한다. 제안하는 기법은 네트워크 접속 계층 주소를 제외한 나머지 정보를 암호화 하기 때문에 물리 주소로 인한 프라이버시가 침해가 발생 하더라도 다른 계층의 정보를 알 수 없으므로 네트워크 계층의 위치 정보 및 응용계층의 사용자의 식별 정보 등을 보호 함으로 상관 공격에 안전하다. 물리 주소 역시 해당 도메인에서 유일한 식별 정보 이므로 멀티 도메인 통신이 이루어 지는 인터넷 상에서는 운전자의 프라이버시를 보호 할 수 있다.