• 제목/요약/키워드: VAE(Variational Autoencoder)

검색결과 22건 처리시간 0.03초

Human Laughter Generation using Hybrid Generative Models

  • Mansouri, Nadia;Lachiri, Zied
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1590-1609
    • /
    • 2021
  • Laughter is one of the most important nonverbal sound that human generates. It is a means for expressing his emotions. The acoustic and contextual features of this specific sound are different from those of speech and many difficulties arise during their modeling process. During this work, we propose an audio laughter generation system based on unsupervised generative models: the autoencoder (AE) and its variants. This procedure is the association of three main sub-process, (1) the analysis which consist of extracting the log magnitude spectrogram from the laughter database, (2) the generative models training, (3) the synthesis stage which incorporate the involvement of an intermediate mechanism: the vocoder. To improve the synthesis quality, we suggest two hybrid models (LSTM-VAE, GRU-VAE and CNN-VAE) that combine the representation learning capacity of variational autoencoder (VAE) with the temporal modelling ability of a long short-term memory RNN (LSTM) and the CNN ability to learn invariant features. To figure out the performance of our proposed audio laughter generation process, objective evaluation (RMSE) and a perceptual audio quality test (listening test) were conducted. According to these evaluation metrics, we can show that the GRU-VAE outperforms the other VAE models.

딥러닝을 활용한 설비 이상 탐지 및 성능 분석 (Anomaly Detection and Performance Analysis using Deep Learning)

  • 황주효;진교홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.78-81
    • /
    • 2021
  • 스마트공장 구축사업을 통해 제조업의 생산설비에 센서가 설치되고 각종 공정데이터를 실시간으로 수집할 수 있게 되었다. 이를 통해 제조공정의 설비이상으로 인한 생산중단을 줄이기 위해 실시간 설비 이상 탐지에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 생산설비의 이상탐지를 위해 제조데이터를 딥러닝 모델인 Autoencoder(AE), VAE(Variational Autoencoder), AAE(Adversarial Autoencoder)에 적용하여 그 결과를 도출하였다. 제조데이터는 단순 이동 평균 기법과 전처리 과정을 거쳐 입력데이터로 사용하였으며, 단순이동평균 기법의 윈도우 크기와 AE 모델의 특징벡터 크기에 따른 성능분석을 실시하였다.

  • PDF

Detecting Abnormal Human Movements Based on Variational Autoencoder

  • Doi Thi Lan;Seokhoon Yoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.94-102
    • /
    • 2023
  • Anomaly detection in human movements can improve safety in indoor workplaces. In this paper, we design a framework for detecting anomalous trajectories of humans in indoor spaces based on a variational autoencoder (VAE) with Bi-LSTM layers. First, the VAE is trained to capture the latent representation of normal trajectories. Then the abnormality of a new trajectory is checked using the trained VAE. In this step, the anomaly score of the trajectory is determined using the trajectory reconstruction error through the VAE. If the anomaly score exceeds a threshold, the trajectory is detected as an anomaly. To select the anomaly threshold, a new metric called D-score is proposed, which measures the difference between recall and precision. The anomaly threshold is selected according to the minimum value of the D-score on the validation set. The MIT Badge dataset, which is a real trajectory dataset of workers in indoor space, is used to evaluate the proposed framework. The experiment results show that our framework effectively identifies abnormal trajectories with 81.22% in terms of the F1-score.

Variational Autoencoder를 이용한 교량 손상 위치 추정방법 (Damage Localization of Bridges with Variational Autoencoder)

  • 이강혁;정민웅;전찬웅;신도형
    • 대한토목학회논문집
    • /
    • 제40권2호
    • /
    • pp.233-238
    • /
    • 2020
  • 구조물 건전도 모니터링 시스템을 기반하는 교량 딥러닝 손상 추정 기법들은 대부분 지도학습을 기반으로 하고 있다. 지도학습의 특성상 손상 위치 추정 딥러닝 모델의 학습을 위해 교량의 손상 위치를 나타내는 라벨(Label) 데이터와 이에 따른 교량의 거동 데이터가 필요하다. 하지만 실제 현장에서 손상 위치 라벨 데이터를 정확히 얻어내는 것은 매우 어려운 일이므로, 지도학습 기반 딥러닝은 현장 적용성이 떨어진다는 한계가 있다. 반면에, 비지도학습 기반 딥러닝은 이러한 라벨 데이터 없이도 학습이 가능하다는 장점이 있다. 이러한 점에 착안하여 본 연구에서는 비지도 학습의 대표적인 딥러닝 기법인 Variational Autoencoder를 활용한 교량 손상 위치 추정의 방법을 제안하고 검증하였으며, 그 결과, 교량 손상 위치 추정을 위한 VAE의 적용 가능성을 보였다.

Variational Autoencoder를 활용한 필드 기반 그레이 박스 퍼징 방법 (A Method for Field Based Grey Box Fuzzing with Variational Autoencoder)

  • 이수림;문종섭
    • 정보보호학회논문지
    • /
    • 제28권6호
    • /
    • pp.1463-1474
    • /
    • 2018
  • 퍼징이란 유효하지 않은 값이나 임의의 값을 소프트웨어 프로그램에 입력하여, 보안상의 결함을 찾아내는 소프트웨어 테스팅 기법 중 하나로 이러한 퍼징의 효율성을 높이기 위한 여러 방법들이 제시되어 왔다. 본 논문에서는 필드를 기반으로 퍼징을 수행하면서 커버리지, 소프트웨어 크래쉬와 연관성이 높은 필드가 존재한다는 것에 착안하여, 해당 필드 부분을 집중적으로 퍼징하는 새로운 방식을 제안한다. 이 때, Variational Autoencoder(VAE)라는 딥 러닝 모델을 사용하여 커버리지가 높게 측정된 입력 값들의 특징을 학습하고, 이를 통해 단순 변이보다 학습된 모델을 통해 재생성한 파일들의 커버리지가 균일하게 높다는 것을 보인다. 또한 크래쉬가 발생한 파일들의 특징을 학습하고 재생성 시 드롭아웃을 적용하여 변이를 줌으로써 새로운 크래쉬를 발견할 수 있음을 보인다. 실험 결과 커버리지가 퍼징 도구인 AFL의 큐의 파일들보다 약 10% 정도 높은 것을 확인할 수 있었고 Hwpviewer 바이너리에서 초기 퍼징 단계 시 발생한 두 가지의 크래쉬를 사용하여 새로운 크래쉬 두 가지를 더 발견할 수 있었다.

유전자 발현량 데이터 증대를 위한 Conditional VAE 기반 생성 모델 (Conditional Variational Autoencoder-based Generative Model for Gene Expression Data Augmentation)

  • 봉현수;오민식
    • 방송공학회논문지
    • /
    • 제28권3호
    • /
    • pp.275-284
    • /
    • 2023
  • 유전자 발현 데이터는 질병의 예후 예측, 약물 반응성 예측 등 질병에 대한 이해와 정밀 의료 실현을 위한 연구들에 활용될 수 있지만 충분한 양의 데이터를 수집하는 데 많은 비용적 문제가 있다. 본 논문에서는 Conditional VAE에 기반한 유전자 발현 데이터 생성 모델을 제안하였다. 이전 연구인 WGAN-GP기반의 유전자 발현 생성 모델과 정형 데이터 생성 모델인 CTGAN, TVAE와 비교하여 본 논문의 Conditional VAE기반 모델이 생물학적, 통계학적으로 더 유의미한 합성 데이터를 생성할 수 있음을 보였다.

LSTM-VAE를 활용한 기계시설물 장치의 이상 탐지 시스템 (Anomaly Detection System in Mechanical Facility Equipment: Using Long Short-Term Memory Variational Autoencoder)

  • 서재홍;박준성;유준우;박희준
    • 품질경영학회지
    • /
    • 제49권4호
    • /
    • pp.581-594
    • /
    • 2021
  • Purpose: The purpose of this study is to compare machine learning models for anomaly detection of mechanical facility equipment and suggest an anomaly detection system for mechanical facility equipment in subway stations. It helps to predict failures and plan the maintenance of facility. Ultimately it aims to improve the quality of facility equipment. Methods: The data collected from Daejeon Metropolitan Rapid Transit Corporation was used in this experiment. The experiment was performed using Python, Scikit-learn, tensorflow 2.0 for preprocessing and machine learning. Also it was conducted in two failure states of the equipment. We compared and analyzed five unsupervised machine learning models focused on model Long Short-Term Memory Variational Autoencoder(LSTM-VAE). Results: In both experiments, change in vibration and current data was observed when there is a defect. When the rotating body failure was happened, the magnitude of vibration has increased but current has decreased. In situation of axis alignment failure, both of vibration and current have increased. In addition, model LSTM-VAE showed superior accuracy than the other four base-line models. Conclusion: According to the results, model LSTM-VAE showed outstanding performance with more than 97% of accuracy in the experiments. Thus, the quality of mechanical facility equipment will be improved if the proposed anomaly detection system is established with this model used.

원전 계측 신호 오류 식별 알고리즘 개발 (Development of Nuclear Power Plant Instrumentation Signal Faults Identification Algorithm)

  • 김승근
    • 한국산업정보학회논문지
    • /
    • 제25권6호
    • /
    • pp.1-13
    • /
    • 2020
  • 본 논문에서는 원전 비상 상황 발생 시 다수의 신호 오류가 발생했을 때 어떤 신호에 오류가 발생했는지를 추정하는 신호 오류 식별 (Fault identification) 방법론을 개발하였다. 변분 오토인 코더 (Variational autoencoder; VAE) 기반 모델은 기존의 이상 탐지 방법론과 같이 정상 신호 데이터만을 이용하여 훈련이 진행되며, 이후 각 신호에 대한 복원 오차 (Reconstruction error)와 복원 오차를 입력의 특정 부분으로 미분한 값을 이용하여 어떤 부분에 오류가 포함되어 있는지를 예측한다. 데이터 취득을 위하여 시뮬레이션을 수행하였으며, 일련의 실험으로부터 제시한 신호 오류 식별 방법이 적절한 오차 범위 내에서 오류가 발생한 신호를 특정할 수 있음을 확인하였다.

Variational autoencoder for prosody-based speaker recognition

  • Starlet Ben Alex;Leena Mary
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.678-689
    • /
    • 2023
  • This paper describes a novel end-to-end deep generative model-based speaker recognition system using prosodic features. The usefulness of variational autoencoders (VAE) in learning the speaker-specific prosody representations for the speaker recognition task is examined herein for the first time. The speech signal is first automatically segmented into syllable-like units using vowel onset points (VOP) and energy valleys. Prosodic features, such as the dynamics of duration, energy, and fundamental frequency (F0), are then extracted at the syllable level and used to train/adapt a speaker-dependent VAE from a universal VAE. The initial comparative studies on VAEs and traditional autoencoders (AE) suggest that the former can efficiently learn speaker representations. Investigations on the impact of gender information in speaker recognition also point out that gender-dependent impostor banks lead to higher accuracies. Finally, the evaluation on the NIST SRE 2010 dataset demonstrates the usefulness of the proposed approach for speaker recognition.

오토인코더 기반 수치형 학습데이터의 자동 증강 기법 (Automatic Augmentation Technique of an Autoencoder-based Numerical Training Data)

  • 정주은;김한준;전종훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.75-86
    • /
    • 2022
  • 본 연구는 딥러닝 기반 변분 오토인코더(Variational Autoencoder)를 활용하여 수치형 학습데이터 내 클래스 불균형 문제를 해결하고, 학습데이터를 증강하여 학습모델의 성능을 향상시키고자 한다. 우리는 주어진 테이블 데이터에 대하여 인위적으로 레코드 개수를 늘리기 위해 'D-VAE'을 제안한다. 제안 기법은 최적의 데이터 증강을 지원하기 위해 우선 이산화와 특징선택을 수반한 전처리 과정을 수행한다. 이산화 과정에서 k-means 클러스터링을 적용하여 그룹화한 후, 주어진 데이터가 원-핫 인코딩(one-hot encoding) 기법으로 원-핫 벡터(one-hot vector)로 변환한다. 이후, 특징 선택 기법 중 RFECV 기법을 활용하여 예측에 도움이 되는 변수를 가려내고, 이에 대해서만 변분 오토인코더를 활용하여 새로운 학습데이터를 생성한다. 제안 기법의 성능을 검증하기 위해 4가지 유형의 실험 데이터를 활용하여 데이터 증강 비율별로 그 유효성을 입증한다.