• Title/Summary/Keyword: V2C

Search Result 9,802, Processing Time 0.044 seconds

New Ruthenium Complexes for Semiconductor Device Using Atomic Layer Deposition

  • Jung, Eun Ae;Han, Jeong Hwan;Park, Bo Keun;Jeon, Dong Ju;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.363-363
    • /
    • 2014
  • Ruthenium (Ru) has attractive material properties due to its promising characteristics such as a low resistivity ($7.1{\mu}{\Omega}{\cdot}cm$ in the bulk), a high work function of 4.7 eV, and feasibility for the dry etch process. These properties make Ru films appropriate for various applications in the state-of-art semiconductor device technologies. Thus, it has been widely investigated as an electrode for capacitor in the dynamic random access memory (DRAM), a metal gate for metal-oxide semiconductor field effect transistor (MOSFET), and a seed layer for Cu metallization. Due to the continuous shrinkage of microelectronic devices, better deposition processes for Ru thin films are critically required with excellent step coverages in high aspect ratio (AR) structures. In these respects, atomic layer deposition (ALD) is a viable solution for preparing Ru thin films because it enables atomic-scale control of the film thickness with excellent conformality. A recent investigation reported that the nucleation of ALD-Ru film was enhanced considerably by using a zero-valent metallorganic precursor, compared to the utilization of precursors with higher metal valences. In this study, we will present our research results on the synthesis and characterization of novel ruthenium complexes. The ruthenium compounds were easy synthesized by the reaction of ruthenium halide with appropriate organic ligands in protic solvent, and characterized by NMR, elemental analysis and thermogravimetric analysis. The molecular structures of the complexes were studied by single crystal diffraction. ALD of Ru film was demonstrated using the new Ru metallorganic precursor and O2 as the Ru source and reactant, respectively, at the deposition temperatures of $300-350^{\circ}C$. Self-limited reaction behavior was observed as increasing Ru precursor and O2 pulse time, suggesting that newly developed Ru precursor is applicable for ALD process. Detailed discussions on the chemical and structural properties of Ru thin films as well as its growth behavior using new Ru precursor will be also presented.

  • PDF

Changes in Mechanical Properties and Magnetic Parameters of Neutron Irradiated Mn-Mo-Ni Low Alloy Steels (중성자에 조사된 Mn-Mo-Ni 저합금강의 기계적 및 자기적 성질 변화)

  • Jang, Gi-Ok;Ji, Se-Hwan;Park, Seung-Sik;Kim, Byeong-Cheol;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1020-1025
    • /
    • 1998
  • Irradiation-induced changes in mechanical properties and magnetic parameters were measured and compared to explore possible correlations for Mn-Mo-Ni low alloy steel surveillance specimens which were irradiated to a neutron fluence of $2.3\times10^{19}n/cm^2$(E>1.0MeV) in a typical pressurized water reactor environment at about $288^{\circ}C$. For mechanical property parameters, microvickers hardness, tensile and Charpy impact test were performed and Barkhausen noise amplitude, coercivity, remanence, maximum induction were measured for magnetic parameters. respectively. Results of mechanical property measurements showed an increase in yield and tensile strength, microvickers hardness. 41J indexed $RT_{NDT}$ and a decrease in upper shelf energy irrespective of base and weld metals. However, in the case of tensile properties, the changes in weld metal were negligible compared to the base metal. In the case of magnetic measurements, it is found that magnetic remanence, BN amplitude. BN energy have dropped significantly but coercivity(H,) has increased rapidly after irradiation. In this study. the measurements conducted on surveillance specimens of Mn-Mo-Ni low alloy steel showed that there were strong correlations between mechanical properties and magnetic properties.

  • PDF

Joining and Performance of Alkali Metal Thermal-to-electric Converter (AMTEC) (알칼리금속 열전기변환장치의 접합과 출력성능)

  • Suh, Min-Soo;Lee, Wook-Hyun;Woo, Sang-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.665-671
    • /
    • 2017
  • The alkali-Metal Thermal-to-electric Converter (AMTEC) is one of the promising static energy conversion technologies for the direct conversion of thermal energy to electrical energy. The advantages over a conventional energy converter are its high theoretical conversion efficiency of 40% and power density of 500 W/kg. The working principle of an AMTEC battery is the electrochemical reaction of the sodium through an ion conducting electrolyte. Sodium ion pass through the hot side of the beta"-alumina solid electrolyte (BASE) primarily as a result of the pressure difference. This pressure difference across the BASE has a significant effect on the overall performance of the AMTEC system. In order to build the high pressure difference across the BASE, hermeticity is required for each joined components for high temperature range of $900^{\circ}C$. The AMTEC battery was manufactured by utilizing robust joining technology of BASE/insulator/metal flange interfaces of the system for both structural and electrical stability. The electrical potential difference between the anode and cathode sides, where the electrons emitted from sodium ionization and recombined into sodium, was characterized as the open-circuit voltage. The efforts of technological improvement were concentrated on a high-power output and conversion efficiency. This paper discusses about the joining and performance of the AMTEC systems.

BaCeO3-BaZrO3 Solid Solution (BCZY) as a High Performance Electrolyte of Protonic Ceramic Fuel Cells (PCFCs) (BaCeO3-BaZrO3 고용체(BCZY) 기반 프로톤 세라믹 연료전지(PCFC)용 고성능 전해질 개발)

  • An, Hyegsoon;Shin, Dongwook;Choi, Sung Min;Lee, Jong-Ho;Son, Ji-Won;Kim, Byung-Kook;Je, Hae June;Lee, Hae-Weon;Yoon, Kyung Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.271-277
    • /
    • 2014
  • To overcome the limitations of the solid oxide fuel cells (SOFCs) due to the high temperature operation, there has been increasing interest in proton conducting fuel cells (PCFCs) for reduction of the operating temperature to the intermediate temperature range. In present work, the perovskite $BaCe_{0.85-x}Zr_xY_{0.15}O_{3-\delta}$ (BCZY, x = 0.1, 0.3, 0.5, and 0.7) were synthesized via solid state reaction (SSR) and adopted as an electrolyte materials for PCFCs. Powder characteristics were examined using X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer, Emmett and Teller (BET) surface area analysis. Single phase BCZY were obtained in all compositions, and chemical stability was improved with increasing Zr content. Anode-supported cell with $Ni-BaCe_{0.55}Z_{0.3}Y_{0.15}O_{3-\delta}$ (BCZY3) anode, BCZY3 electrolyte and BCZY3-$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (BSCF) composite cathode was fabricated and electrochemically characterized. Open-circuit voltage (OCV) was 1.05 V, and peak power density of 370 ($mW/cm^2$) was achieved at $650^{\circ}C$.

Effect of Chlorella Extract on Quality Characteristics of Yoghurt (Chlorella 추출물 첨가가 요구르트의 품질 특성에 미치는 영향)

  • 조은정;남은숙;박신인
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • Yoghurt base was prepared from skim milk added with 0.25∼2.0%(w/v) of chlorella extract powder and fermented with lactic acid bacteria(Streptococcus thermophilus : Lactobacillus casei = 1:1) at 37$^{\circ}C$ for 24 hours. Quality characteristics of the yoghurts were evaluated in terms of acid production, number of viable cell, color, texture property, and sensory property during lactic acid fermentation. The addition of 0.25% chlorella extract powder stimulated the growth of lactic acid bacteria which showed the highest number of viable cell counts(l.46${\times}$10$\^$8/ CFU/mL) after 12 hours incubation, and also enhanced the acid production which was pH 4.33 after 12 hours incubation. The L values(brightness) of the yoghurts containing chlorella extract powder were lower than control group, whereas the b values(yellowness) were higher. The hardness and gumminess of the yoghurt added with 0.25% chlorella extract powder were higher than others. Sensory scores of the yoghurt added with 0.25% chlorella extract powder were significantly higher than other groups in color, chlorella odor, sweet taste, chlorella taste, mouth feel, aftertaste and overall acceptability.

A Study on Microstructure, Mechanical Properties, Friction and Adhesion of TiN Thin Films Coated on SKD61 and Radical Nitrided SKD61 Substrates by Arc Ion Plating (SKD61과 Radical Nitriding 처리된 SKD61 기판상에 Arc Ion Plating으로 증착된 TiN 박막의 미세구조 및 기계적 특성, 마찰 및 접착력에 관한 연구)

  • Joo, Yun-Kon;Yoon, Jae-Hong;Fang, Wei;Zhang, Shi-Hong;Cho, Tong-Yul;Ha, Sung-Sik
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.6
    • /
    • pp.254-257
    • /
    • 2007
  • TiN coating on tool steel has been widely used for the improvement of durability of tools. In this work, radical nitriding(RN) is carried out on SKD61 at $450^{\circ}C$ for 5 hours in the ammonia gas pressure $2.7{\times}10^3\;Pa$. The TiN coating is carried out by arc ion plating(AIP) with the process parameters: arc power 150 A, bias voltage -50V, coating time 40 minutes and nitrogen gas pressure $4{\times}10^3\;Pa$. Hardness, elastic modulus, friction coefficient and adhesion of TiN coating on substrates of both TiN/SKD61 and TiN/RN SKD61 coatings are investigated comparatively. The primary crystalline faces of TiN surface are(200) and(111) for TiN/SKD61 and TiN/RN SKD61 respectively. In addition to the primary phase, Fe phase exists in TiN/SKD61 coating, but not in TIN/RN SKD61. The hardness of TiN/RN SKD61 is about 700 Hv, 250 Hv(56%) higher than that of TiN/SKD61 at the near interface of TiN and substrates. At the TiN surface, hardness of TiN/RN SKD61 is 2,149 Hv, 71 Hv(3%) higher than that of TiN/SKD61. The elastic modulus of TiN coating is improved to 26.7 GPa(6%) by radical nitriding. The adhesion is improved by the RN coating showing no spalling. buckling and chipping on the scratch test track which are shown on the non-RN TiN/SKD61.

A Study on the Recycling of Waste in the Limestone Mine (석탄석광산 폐석의 재활용 연구)

  • Chae, Young-Bae;Joeng, Soo-Bok;Koh, Won-Sik;Park, Je-Shin;Yang, Shi-Young
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.25-31
    • /
    • 1996
  • The wastes ot l~mestone mines have been cause the extrar.ngance of the valuablz m e r a l s and destruction of the environment. Therefore, \\-c tied ta separation of calcite illid clay from the limestone mine wastes by rotntmg screen type separator made by ourselves in order to recyding such us a raw matcriala for cement maimfacture. CaO amtents in the separated coarse products increased from 37.36 wt% to 42+2 wt% at the condition ihat water content in wastes was lzss than 6wt%, the passing time of specimen in &amber was 15 semnds and the rotation speed was 6OLl qm. A process in order lo separate wastes effectively to having wide range aI part~dcs ize was cstablishcd and CaO contents of coarsc products through this process increased to 46.85 wt%. Tbis rcsult is insuEiicient to directly rcusing as a raw malerials for cement. However, it is supposed that coarse products would be able to be reuscd as a raw materials uf cement, if only it rs sclected dolomite in wastes, and really it may be possible in fields Othenvise, undcrsize products(less than 20 mm) would be able to recycling as a raw of cement bccause chcmicrl campasitions of thosc is kept almost constant v&cs on the overall process.

  • PDF

Modeling the Controllable Parameters of Radon Environment System with Dose Sensitivity Analysis (실내 라돈환경계의 선량감도분석에 의한 제어매개변수 모델링)

  • Zoo, Oon-Pyo;Chang, Yi-Young;Kim, Kern-Joong
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.41-54
    • /
    • 1991
  • This paper aimed to analyse dose sensitivity to the controllable parameters of indoor radon $(^{222}Rn)$ and its decay products (Rn-D) by applying the input~output linear system theory. Physical behaviors of $^{222}Rn\;&\;Rn-D$ were analyzed in terms of $(^{222}Rn)$ gas -generation, -migation and -infiltration to indoor environments, and the performance output-function, i. e. mean dose equivalent to Tracho-Bronchial (TB) lung region, was assessed to the following extented ranges of the controllable paramenters; a) the ventilation rate $constant({\lambda}_v)\;:\;0{\sim}50[h^{-l}].\;b)$ the attachment rate $constant({\lambda}_a)\;:\;0{\sim}500[h^{-l}].\;c)$ the unattached-deposition rate constant (${\lambda}^u_d)\;:\;0-50[h-l]$. A linear input-output model was reconstructed from the original models in literatures, as follows, which was modified into the matrices consisting of 111 nodal equations; a) indoor $^{222}Rn\;&\;Rn-D$ Behaviour; Jacobi-Porstendoerfer-Bruno model.

  • PDF

Replacement of the in vivo Bioassay for Erythropoietin with the in vitro Bioassay (Erythropoietin in vivo 시험법의 in vitro 대체 시험법 확립)

  • 백상훈;김진만;권기성;박송용;허재욱
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.255-260
    • /
    • 2003
  • In vivo bioassays for biological medicines have been considered final resort to unequivocally assess the biological activities for them because there are some cases in which the biological activities obtained from in vivo bioassay and in vitro bioassay quite differ each other. The in vivo biological activity of EPO depends on its sialic acid contents which confer microheterogeneity-isoforms to this protein. We have devise a method which consists of a in vitro bioassay using BaF3 cell line and a capillary zone electrophoresis (CZE) for the measurement of the EPO isoform distribution. The biological activity of EPO obtained using in vitro bioassay with BaF3 cell line showed good correlation (C.V.(%) 7.34, 5.85, 8,16, 8.08, 8.8) to EPO content measured either spectrophotometric assay (A280 0.1 % =0.743) or radio immunoassay. The assay validation results of in vitro bioassay with 3 lot of in house EPO showed good results to EPO content measured either in vivo assay or radio immunoassay. and also showed good results the robustness of our method in terms of precision, accuracy, repeatability. The isoform distribution for EPO-BRP (1 : 1 mixture of epoetin-${\alpha}$ and epoetin-${\beta}$, European Pharmacopoeia) by CZE method resulted in isoform 2 through isoform 8. The major peaks in electrophoregram were composed of isoform 3 through 7. Our recombinant EPO (epoetin-${\alpha}$) having equivalent in vivo biological activity showed the isoform distribution of isoform 3 through 9. The major peaks consisted of isoform 4 through 8. The peak area of isoform 4 was always smaller than that of isoform 5. The preparations of recombinant epoetin-${\alpha}$ with lower in vivo biological activity than EPO-BRP showed the isoform 2 through 8 in their electrophoregrams whose major peaks consisted of the isoform 3 through 7. The peak area of isoform 4 was larger than that of isoform 5.

Preparation of Lipid Nanoparticles Containing Paclitaxel and their in vitro Gastrointestinal Stability (파클리탁셀을 함유한 지질나노입자의 제조와 인공 소화액에서의 안정성 평가)

  • Kim, Eun-Hye;Lee, Jung-Eun;Lim, Deok-Hwi;Jung, Suk-Hyun;Seong, Ha-Soo;Park, Eun-Seok;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • Peroral administration is the most convenient one for the administration of pharmaceutically active compounds. Most of poorly water-soluble drugs administered via the oral route, however, remain poorly available due to their precipitation in the gastrointestinal (GI) tract and low permeability through intestinal mucosa. In this study, one of drug delivery carriers, lipid nanoparticles (LNPs) were designed in order to reduce side effects and improve solubility and stability in GI tract of the poorly water soluble drugs. However, plain LNPs are generally unstable in the GI tract and susceptible to the action of acids, bile salts and enzymes. Accordingly, the surface of LNPs was modified with polyethylene glycol (PEG) for the purpose of improving solubility and GI stability of paclitaxel (PTX) in vitro. PEG-modified LNPs containing PTX was prepared by spontaneous emulsification and solvent evaporation (SESE) method and characterized for mean particle diameter, entrapping efficiency, zeta potential value and in vitro GI stability. Mean particle diameter and zeta potential value of PEG-modified LNP containing PTX showed approximately 86.9 nm and -22.9 mV, respectively. PTX entrapping efficiency was about 70.5% determined by UV/VIS spectrophotometer. Futhermore, change of particle diameter of PTX-loaded PEG-LNPs in simulated GI fluids and bile fluid was evaluated as a criteria of GI stability. Particle diameter of PTX-loaded PEG-LNPs were preserved under 200 nm for 6 hrs in simulated GI fluids and bile fluid at $37^{\circ}C$ when DSPE-mPEG2000 was added to formulation of LNPs above 4 mole ratio. As a result, PEG-modified LNPs improved stability of plain LNPs that would aggregate in simulated GI fluids and bile solution. These results indicate that LNPs modified with biocompatible and nontoxic polymer such as PEG might be useful for enhancement of GI stability of poorly water-soluble drugs and they might affect PTX absorption affirmatively in gastrointestinal mucosa.