• 제목/요약/키워드: V2 vasopressin receptor

검색결과 6건 처리시간 0.022초

Oxytocin produces thermal analgesia via vasopressin-1a receptor by modulating TRPV1 and potassium conductance in the dorsal root ganglion neurons

  • Han, Rafael Taeho;Kim, Han-Byul;Kim, Young-Beom;Choi, Kyungmin;Park, Gi Yeon;Lee, Pa Reum;Lee, JaeHee;Kim, Hye young;Park, Chul-Kyu;Kang, Youngnam;Oh, Seog Bae;Na, Heung Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.173-182
    • /
    • 2018
  • Recent studies have provided several lines of evidence that peripheral administration of oxytocin induces analgesia in human and rodents. However, the exact underlying mechanism of analgesia still remains elusive. In the present study, we aimed to identify which receptor could mediate the analgesic effect of intraperitoneal injection of oxytocin and its cellular mechanisms in thermal pain behavior. We found that oxytocin-induced analgesia could be reversed by $d(CH_2)_5[Tyr(Me)^2,Dab^5]$ AVP, a vasopressin-1a (V1a) receptor antagonist, but not by $desGly-NH_2-d(CH_2)_5[D-Tyr^2,Thr^4]OVT$, an oxytocin receptor antagonist. Single cell RT-PCR analysis revealed that V1a receptor, compared to oxytocin, vasopressin-1b and vasopressin-2 receptors, was more profoundly expressed in dorsal root ganglion (DRG) neurons and the expression of V1a receptor was predominant in transient receptor potential vanilloid 1 (TRPV1)-expressing DRG neurons. Fura-2 based calcium imaging experiments showed that capsaicin-induced calcium transient was significantly inhibited by oxytocin and that such inhibition was reversed by V1a receptor antagonist. Additionally, whole cell patch clamp recording demonstrated that oxytocin significantly increased potassium conductance via V1a receptor in DRG neurons. Taken together, our findings suggest that analgesic effects produced by peripheral administration of oxytocin were attributable to the activation of V1a receptor, resulting in reduction of TRPV1 activity and enhancement of potassium conductance in DRG neurons.

유전자 검사를 통해 진단한 선천성 신성 요붕증 1례 (A Case of Congenital Nephrogenic Diabetes Insipidus Diagnosed by DNA Analysis)

  • 김지현;이선주;김애숙;조성민;이동석;김두권;최성민;기창석;김종원
    • Childhood Kidney Diseases
    • /
    • 제9권2호
    • /
    • pp.269-274
    • /
    • 2005
  • 저자들은 불규칙한 발열은 주소로 내원한 5개월 된 어린 영아에서 유전자 검사를 통하여 선천성 신성 요붕증을 조기 확진하였으며 thiazide 치료에 반응을 보였기에 문헌고찰과 함께 보고하는 바이다.

  • PDF

Effects of Ethanol on Neurohumoral Mechanisms for Blood Pressure Regulation in Hemorrhaged Conscious Rats

  • Park, Yoon-Yub;Park, Jae-Sik;Lee, Won-Jung
    • The Korean Journal of Physiology
    • /
    • 제29권1호
    • /
    • pp.91-102
    • /
    • 1995
  • The role of neurohumoral mechanisms in the regulation of cardiovascular functions and the effects of ethanol (EOH) on these mechanisms were examined in hemorrhaged conscious Wistar rats. The rats were bled at a constant rate (2 ml/kg/min) through the femoral artery until mean arterial pressure (MAP) was reduced by 30 mmHg. We studied the responses to hemorrhage 1) under normal conditions (Normal), and after pretreatments with 2) neural blockade (NB), pentolinium, 3) arginine vasopressin V1-receptor antagonist (AVPX) + NB, 4) angiotensin II ATI-receptor antagonist (AngIIX) + NB, 5) combined humoral blockade (HB), and 6) neurohumoral blockade. Intravenous administration of 30% EOH (6.3 ml/kg) attenuated the baroreceptor reflex sensitivity, and enhanced the depressor action of AngIIX. During hemorrhage, NB produced a faster fall ill MAP than Normal both in the saline and EOH groups. However, HB accelerated the rate of fall in MAP only in the EOH group. The recovery from hemorrhagic hypotension was not different between NB and Normal rats, but was attenuated in HB rats in the saline group. Under NB, AngIIX, but not AVPX, retarded the recovery rate compared with NB alone. EOH attenuated the recovery of MAP after hemorrhage in Normal rats, but completely abolished the recovery in HB rats. We conclude that 1) the maintenance of MAP during hemorrhage is mediated almost entirely by the autonomic functions, 2) angiotensin II plays an important role in the recovery from hemorrhagic hypotension, but AVP assumes little importance, 3) AVP release largely depends on the changes in blood volume, whereas renin release depends on the changes in blood pressure rather than blood volume, and 4) EOH increases the dependence of cardiovascular regulation on angiotensin II and impairs the recovery from hemorrhagic hypotension through the attenuation of autonomic functions.

  • PDF

신성요붕증 가계에서 바소프레신 V2 수용체(AVPR2) 유전자 분석 : AVPR2 유전자 R202C 돌연변이의 발견 (Analysis of Vasopressin Receptor Type 2(AVPR2) Gene in a Pedigree with Congenital Nehrogenic Diabetes Insipidus : Identification of a Family with R202C Mutation in AVPR2 Gene)

  • 박준동;김호성;김희주;이윤경;곽영호;하일수;정해일;최용;박혜원
    • Childhood Kidney Diseases
    • /
    • 제3권2호
    • /
    • pp.209-216
    • /
    • 1999
  • 목적 : 신성 요붕증(Nephrogenic diabetes insipidus, NDI)은 바소프레신(arginine vasoporessin, AVP)에 대한 신세뇨관의 저항성으로 인하여 요농축의 장애를 특징으로 하는 드문 유전성 질환이다. 반성유전형 신성 요붕증은 바소프레신 V2수용체(AVPR2)의 장애에 기인하며, NDI 환자에서 지금까지 다양한 AVPR2의 돌연변이가 보고되었다. 저자들은 임상적으로 반성 유전형 신성 요붕증으로 진단된 가계에서 AVPR2 유전자의 돌연변이를 발견하기 위하여 분자유전학적 검사를 실시하였다. 방법 : 대상환자의 백혈구에서 추출한 DNA로 AVPR2유전자를 polymerase chain reaction-single strand conformational polymorphism(PCR-SSCP)분석하여 이상이 발견된 부분은 클론닝하여 염기서열을 분석하였다. 같은 PCR 산물을 Hae III로 처리하여 PCR-RFLP(restriction fragement length polymorphism) 분석을 하였다. 결과 : AVPR2 유전자를 PCR-SSCP 분석하였을 때 PCR 산물의 정상인과 이동거리의 차이가 발견되어 환아에서 돌연변이가 있고 환아의 어머니는 보인자임을 예측하였고, 염기서열을 분석하여 675번째 염기 A가 G로 치환됨으로 tryptophan이 cysteine으로 바뀌는 R202C 점돌연변이를 발견하였다. 같은 PCR 산물을 PCR-RFLP 분석을 하였을 때 돌연변이로 인한 Hae III의 인지부위의 상실을 확인하였고 환아의 어머니가 이종접합보유자 (heterozygote)임을 확인하였다. 결론 : 저자들은 임상적으로 신성 요붕증으로 확인된 환아와 어머니의 V2 수용체 유전자를 분석하여 R202C 돌연변이를 확인하였다. 신성 요붕증은 진단이 지연되면 성장장애, 정신박약과 사망을 초래할 수 있는 심각한 질환이나, 태생기 또는 신생아기에 진단하면 후유증을 예방할 수 있으므로 조기진단 및 보인자 발견에 분자유전학적 진단 방법을 적극 활용하여야 하겠다.

  • PDF

Oxytocin-induced endothelial nitric oxide dependent vasorelaxation and ERK1/2-mediated vasoconstriction in the rat aorta

  • Xu, Qian;Zhuo, Kunping;Zhang, Xiaotian;Zhang, Yaoxia;Xue, Jiaojiao;Zhou, Ming-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.255-262
    • /
    • 2022
  • Oxytocin is a neuropeptide produced primarily in the hypothalamus and plays an important role in the regulation of mammalian birth and lactation. It has been shown that oxytocin has important cardiovascular protective effects. Here we investigated the effects of oxytocin on vascular reactivity and underlying the mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and in rat aorta ex vivo. Oxytocin increased phospho-eNOS (Ser 1177) and phospho-Akt (Ser 473) expression in HUVECs in vitro and the aorta of rat ex vivo. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited oxytocin-induced Akt and eNOS phosphorylation. In the rat aortic rings, oxytocin induced a biphasic vascular reactivity: oxytocin at low dose (10-9-10-8 M) initiated a vasorelaxation followed by a vasoconstriction at high dose (10-7 M). L-NAME (a nitric oxide synthase inhibitor), endothelium removal or wortmannin abolished oxytocin-induced vasorelaxation, and slightly enhanced oxytocin-induced vasoconstriction. Atosiban, an oxytocin/vasopressin 1a receptor inhibitor, totally blocked oxytocin-induced relaxation and vasoconstriction. PD98059 (ERK1/2 inhibitor) partially inhibited oxytocin-induced vasoconstriction. Oxytocin also increased aortic phospho-ERK1/2 expression, which was reduced by either atosiban or PD98059, suggesting that oxytocin-induced vasoconstriction was partially mediated by oxytocin/V1aR activation of ERK1/2. The present study demonstrates that oxytocin can activate different signaling pathways to cause vasorelaxation or vasoconstriction. Oxytocin stimulation of PI3K/eNOS-derived nitric oxide may participate in maintenance of cardiovascular homeostasis, and different vascular reactivities to low or high dose of oxytocin suggest that oxytocin may have different regulatory effects on vascular tone under physiological or pathophysiological conditions.