• Title/Summary/Keyword: V.A.S

Search Result 11,884, Processing Time 0.043 seconds

Study on the Salt Tolerance of Rice and Other Crops in Reclaimed Soil Areas. -6. On the Effects of Increased N. P. K. Applications for Rice Plant in Reclaimed Salty Areas (간척지(干拓地)에서 수도(水稻) 및 기타작물(其他作物)의 내염성(耐鹽性)에 관(關)한 연구(硏究) -6. 염분간척지(鹽分干拓地)에서 수도(水稻)에 대한 N, P, K,의 증비효과에 관(關)하여)

  • Im, H.B.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.35-41
    • /
    • 1970
  • The experiment was conducted at the salt concentration of 0.5% and 1% end of April, respectively, in low and high-salty and the non-salty areas of silt loam with the Nongkwang, rice variety. The factorial design with confounding blocks of 3 levels each of 10, 15 and 20 kg of N, 8, 12 and 16kg of phosphate and potash, respectively, per 10a was applied. 1. N applications increased by 1.5 and 2 times with the fixed amount of $P_2O_5$ and $K_2O$ (8kg/10a each) increased the proportion absorbed to the applications of N in both non salty and low-salty areas. It was observed that the absorption of Ca and Si was inhibited by either an increased treatment of N alone or combination with the other nutrients in the salty area. 2. In the non-salty area, an increased applications of standard amount of N, $P_2O_5$ and $K_2O$ respectively did not increased the yields. Doubling the application of $K_2O$ resulted in a decreased yield. 3. Applications of additional of 1.5 and 2 times the 10 kg of N per 10a increased the rice yields 12% and 21% respectively, in the low-salty area. An increased application of $P_2O_5$ and $K_2O$ failed to bring about an increased yield. 4. Increasing the application of N gave a significant increased in the yield of rice grain and 1.5 times of N applications were seemed profitable on the high-salty area. Although an increased applications $P_2O_5$ and $K_2O$ seemed to increase the yields of grain, no significant increase was observed. 5. An increased application of N increased the number of panicles up to 1.5 times the standard amount in the non-salty area, but no further increase resulted by doubling the application. The number of panicles was increased in proportion to the increased application of N in both low and high-salty areas. An increased application of $P_2O_5$ increase the number of panicles per unit area in each experimental plot while that of $K_2O$ had no effect but rather decreased the number. 6. The effect of an increased application of N decreased the weight of panicle in the non-salty area, but when the application was increased to 1.5 times or more an increased weight of panicle resulted in both salty areas. Doubling the application had approximately the same effect as 1.5 times the application. Increasing the applications of $P_2O_5$ and $K_2O$ had no effect on the panicle weight in the experimental plots. Increasing the applications of N, $P_2O_5$ and $K_2O$ did not effect the weight of 1,000 grains produced in the non-salty and salty areas. Increasing the application of N decreased the number of grains per panicle in the non-salty area but increased the number of grains per panicle in either salty areas. 7. The ratio of matured grains was highest in the low-salty area and the lowest in the high-salty area. An increased N applications decreased the ratio of matured grains in the non-salty area. No effect was observed in both low and high-salty areas. Increased the $P_2O_5$ and $K_2O$ application showed no effect on the ratio of matured grains in the experimental plots. 8. Increased applications of N, $P_2O_5$ and $K_2O$ was observed not to change the percentage of milling recovery in any experimental plots. Broken rice was increased equally by an increased application of N in the non-salty and salty areas but more remarkably so in the former. 9. Increased applications of N increased the straw production equally in the non-salty, low and high-salty areas. However, no increased production was observed from heavier applications of $P_2O_5$ and $K_2O$. Additional N applications reduced the rate of rough grain weight v.s. straw weight in the non-salty area but increased the ratios in both low and high-salty areas. Additional $P_2O_5$ and $K_2O$ had no effect with the ratio.

  • PDF

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 1974
  • In order to prepare the mashing materials for 'Takju', Korean wine, with potatoes, theywere steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash, and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows, 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively. 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D40^{\circ}$ 30' 128 W.V. and 13.2 A.U.. 3. The effects of various brewing conditions on the contents of Takju mashes were as follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing were 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol, fusel oil and Formol nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidifies of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%). 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formol nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bacteria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8,\;1.5{\times}10^8$), and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju. was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes(4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Korean Journal of Agricultural Science
    • /
    • v.1 no.1
    • /
    • pp.67-81
    • /
    • 1974
  • In order to prepare the mashing materials for "Takju", Korean wine, with potatoes they were steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows. 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D_{40^{\circ}}{^{30{\prime}}}$ 128 W.V. and 13.2 A. U. 3. The effects of various brewing conditions on the contents of Takju mashes wereas follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol fusel oil and Formal nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidities of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%) 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formal nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bateria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8$, $1.5{\times}10^8$) and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes (4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF

A study of the plan dosimetic evaluation on the rectal cancer treatment (직장암 치료 시 치료계획에 따른 선량평가 연구)

  • Jeong, Hyun Hak;An, Beom Seok;Kim, Dae Il;Lee, Yang Hoon;Lee, Je hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.171-178
    • /
    • 2016
  • Purpose : In order to minimize the dose of femoral head as an appropriate treatment plan for rectal cancer radiation therapy, we compare and evaluate the usefulness of 3-field 3D conformal radiation therapy(below 3fCRT), which is a universal treatment method, and 5-field 3D conformal radiation therapy(below 5fCRT), and Volumetric Modulated Arc Therapy (VMAT). Materials and Methods : The 10 cases of rectal cancer that treated with 21EX were enrolled. Those cases were planned by Eclipse(Ver. 10.0.42, Varian, USA), PRO3(Progressive Resolution Optimizer 10.0.28) and AAA(Anisotropic Analytic Algorithm Ver. 10.0.28). 3fCRT and 5fCRT plan has $0^{\circ}$, $270^{\circ}$, $90^{\circ}$ and $0^{\circ}$, $95^{\circ}$, $45^{\circ}$, $315^{\circ}$, $265^{\circ}$ gantry angle, respectively. VMAT plan parameters consisted of 15MV coplanar $360^{\circ}$ 1 arac. Treatment prescription was employed delivering 54Gy to recum in 30 fractions. To minimize the dose difference that shows up randomly on optimizing, VMAT plans were optimized and calculated twice, and normalized to the target V100%=95%. The indexes of evaluation are D of Both femoral head and aceta fossa, total MU, H.I.(Homogeneity index) and C.I.(Conformity index) of the PTV. All VMAT plans were verified by gamma test with portal dosimetry using EPID. Results : D of Rt. femoral head was 53.08 Gy, 50.27 Gy, and 30.92 Gy, respectively, in the order of 3fCRT, 5fCRT, and VMAT treatment plan. Likewise, Lt. Femoral head showed average 53.68 Gy, 51.01 Gy and 29.23 Gy in the same order. D of Rt. aceta fossa was 54.86 Gy, 52.40 Gy, 30.37 Gy, respectively, in the order of 3fCRT, 5fCRT, and VMAT treatment plan. Likewise, Lt. Femoral head showed average 53.68 Gy, 51.01 Gy and 29.23 Gy in the same order. The maximum dose of both femoral head and aceta fossa was higher in the order of 3fCRT, 5fCRT, and VMAT treatment plan. C.I. showed the lowest VMAT treatment plan with an average of 1.64, 1.48, and 0.99 in the order of 3fCRT, 5fCRT, and VMAT treatment plan. There was no significant difference on H.I. of the PTV among three plans. Total MU showed that the VMAT treatment plan used 124.4MU and 299MU more than the 3fCRT and 5fCRT treatment plan, respectively. IMRT verification gamma test results for the VMAT plan passed over 90.0% at 2mm/2%. Conclusion : In rectal cancer treatment, the VMAT plan was shown to be advantageous in most of the evaluation indexes compared to the 3D plan, and the dose of the femoral head was greatly reduced. However, because of practical limitations there may be a case where it is difficult to select a VMAT treatment plan. 5fCRT has the advantage of reducing the dose of the femoral head as compared to the existing 3fCRT, without regard to additional problems. Therefore, not only would it extend survival time but the quality of life in general, if hospitals improved radiation therapy efficiency by selecting the treatment plan in accordance with the hospital's situation.

  • PDF