• Title/Summary/Keyword: V-model

Search Result 3,776, Processing Time 0.027 seconds

Exploring the Key Priority of V2H Communication Technology Using the KANO Model (KANO 모델을 활용한 V2H 커뮤니케이션 기술의 우선순위 분석)

  • SangHwa, Lee;SooHee, Kang;Jeong Ah, Jang
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.91-99
    • /
    • 2022
  • In Korea, various studies on autonomous vehicles are being conducted with the aim of commercializing the fully autonomous driving (Lv.4) on major roads in 2027. Currently, the communication between non-autonomous vehicles and road users is made with gestures, eye contact, and verbal signals. In the case of autonomous vehicles in the future, autonomous vehicles should communicate instead of drivers. Recently, V2H communication technology (communication technology between autonomous vehicles and road users) is being developed. This study shows technology priorities using the KANO model in caution (warning) and traffic (concession) situations. As a result, a total of six attractive quality technologies were analyzed: technology to provide dark warning information in a display graphic; technology to provide dark warning information in a projection graphic; technology to provide light concession information in a display graphic; technology to provide dark concession information in a display graphic. In the future, it will investigate the preference of users in providing V2H information by road situation. It will be used as a V2H design priority.

Characteristics of Ferroelectric-Gate MFISFET Device Behaving to NDRO Configuration (NDRD 방식의 강유전체-게이트 MFSFET소자의 특성)

  • 이국표;강성준;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • Device characteristics of the Metal-Ferroclecric-Semiconductor FET(MFSFET) are simulated in this study. The field-dependent polarization model and the square-law FET model are employed in our simulation. C-V$_{G}$ curves generated from our MFSFET simulation exhibit the accumulation, the depletion and the inversion regions clearly. The capacitance, the subthreshold and the drain current characteristics as a function of gate bias exhibit the memory windows are 1 and 2 V, when the coercive voltages of ferroelectric are 0.5 and 1 V respectively. I$_{D}$-V$_{D}$ curves are composed of the triode and the saturation regions. The difference of saturation drain currents of the MFSFET device at the dual threshold voltages in I$_{D}$-V$_{D}$ curve is 1.5, 2.7, 4.0, and 5.7 ㎃, when the gate biases are 0, 0.1, 0.2 and 0.3V respectively. As the drain current is demonstrated after time delay, PLZT(10/30/70) thin film shows excellent reliability as well as the decrease of saturation current is about 18 % after 10 years. Our simulation model is expected to be very useful in the estimation of the behaviour of MFSFET devices.T devices.

Accuracy Assessment of Land-Use Land-Cover Classification Using Semantic Segmentation-Based Deep Learning Model and RapidEye Imagery (RapidEye 위성영상과 Semantic Segmentation 기반 딥러닝 모델을 이용한 토지피복분류의 정확도 평가)

  • Woodam Sim;Jong Su Yim;Jung-Soo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.269-282
    • /
    • 2023
  • The purpose of this study was to construct land cover maps using a deep learning model and to select the optimal deep learning model for land cover classification by adjusting the dataset such as input image size and Stride application. Two types of deep learning models, the U-net model and the DeeplabV3+ model with an Encoder-Decoder network, were utilized. Also, the combination of the two deep learning models, which is an Ensemble model, was used in this study. The dataset utilized RapidEye satellite images as input images and the label images used Raster images based on the six categories of the land use of Intergovernmental Panel on Climate Change as true value. This study focused on the problem of the quality improvement of the dataset to enhance the accuracy of deep learning model and constructed twelve land cover maps using the combination of three deep learning models (U-net, DeeplabV3+, and Ensemble), two input image sizes (64 × 64 pixel and 256 × 256 pixel), and two Stride application rates (50% and 100%). The evaluation of the accuracy of the label images and the deep learning-based land cover maps showed that the U-net and DeeplabV3+ models had high accuracy, with overall accuracy values of approximately 87.9% and 89.8%, and kappa coefficients of over 72%. In addition, applying the Ensemble and Stride to the deep learning models resulted in a maximum increase of approximately 3% in accuracy and an improvement in the issue of boundary inconsistency, which is a problem associated with Semantic Segmentation based deep learning models.

Electrical properties of $(Ba,Sr)TiO_3$ thin films and conduction mechanism of leakage current ($(Ba,Sr)TiO_3$박막의 전기적 성질과 누설전류 전도기구)

  • 정용국;임원택;손병근;이창효
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.242-248
    • /
    • 2000
  • BST thin films were prepared with various deposition conditions by rf-magnetron sputtering. As substrate temperature increases and Ar/$O_2$ratio decreases, the electrical properties of the BST films improve. The conventional Schottky model and modified-Schottky model were introduced in order to investigate the leakage-current-conduction mechanisms of the deposited films. It was found that the modified-Schottky model better describes the current-conduction mechanism in the BST films than the conventional Schottky model. From the modified-Schottky model, optical dielectric constant ($\varepsilon$), electronic drift mobility ($\mu$), and barrier height $({\phi}_b)are calculated as $\varepsilon$=4.9, $\mu$=0.019 $\textrm{cm}^2$/V-s, and ${\phi}_b=0.79 eV.

  • PDF

Numerical Analysis of Thermal and Flow affected by the variation of rib interval and Pressure drop Characteristics (리브 간격 변화에 따른 열.유동 수치해석 및 압력 저하 특성)

  • Chung, Han-Shik;Lee, Gyeong-Wan;Shin, Yong-Han;Choi, Soon-Ho;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.616-624
    • /
    • 2011
  • The flow characteristics and heat transfer augment on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow has been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio were 0.07 and rib height to channel height ratio was set as e/H=0.117 for various PR(rib pitch-to-rib height rate) between 8~14, respectively. The SST k-${\omega}$ turbulence model and v2-f turbulence model were used to find out the heat transfer and the flow characteristics of near the wall which are suited to obtain realistic phenomena. The numerical analysis results show turbulent flow characteristics, heat transfer enhancement and friction factor as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow. and v2-f turbulence model simulation results have a good agreement with experimental values.

Assessement of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tube (열간 후방압출된 Ti-6Al-4V 튜브의 성형결함 해석)

  • 염종택;심인규;나영상;박노광;홍성석;심인옥
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.347-350
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. To predict the forming-defects such as shear band, inner cracks or surface cracks, dynamic material model(DMM) including Ziegler's instability criterion and modified Cockcroft-Latham fracture criterion(C-L model) were used. These models were coupled to the internal variables generated from FE analysis. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The simulation results for the backward extrusion were compared with the experimental observations.

  • PDF

A computer simulation of the peso-scale microstructural evolution in the ternary Ni- ${Ni_3}Al-{Ni_3}V$ system (${Ni_3}Al-{Ni_3}V$ 준이원계 합금 포함 삼원계 시스템에서의 meso-scale 미세구조의 전산 모사에 관한 연구)

  • Park, Sung-Il;Lee, Hyuck-Mo
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.947-952
    • /
    • 2001
  • The meso-scale microstructure of the $Ni-Ni_3Al- Ni_3V$ system is crucial to obtain both high strength and high toughness. Its evolution may be predicted with the aid of computer simulation of the compositional separation for heat-treated alloys. In this study, computer simulations of the hypothetical A-B-C ternary system, which is similar to the $Ni-Ni_3Al- Ni_3V$ system in terms of phase equilibria, have been performed using the kinetic modeling. Simulated morphologies were changed with nominal compositions and model parameters. It was showed the current model was useful and the more realistic model was proposed.

  • PDF

Flow Stress Determination of Johnson-Cook Model of Ti-6Al-4V Material using 3D Printing Technique (3D 프린팅으로 제작한 Ti-6Al-4V 재료의 Johnson-Cook 모델의 유동 응력 결정)

  • Park, Dae-Gyoun;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • This paper investigates the compressive deformation behavior of direct metal tooling (DMT), processing titanium alloy (Ti-6Al-4V) parts under high strain loading conditions. Split Hopkinson Pressure Bar (SHPB) experiments were performed to determine the flow stress and the coefficients of the Johnson-Cook model. This model is described as a function of strain, strain rate, and temperature. SHPB experiments were performed to characterize the deformation behavior of specimens made with 3D printers, using Ti-6Al-4V material under high temperature and dynamic loading.

Assessment of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tubes using Dynamic Materials Model (동적재료모델을 활용한 열간 후방압출된 Ti-6Al-4V튜브의 성형결함 해석)

  • 염종택;심인규;박노광;홍성석;심인옥
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.566-571
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. Dynamic material model(DMM) including Ziegler's instability criterion was employed to predict the forming defects such as shear band, inner and/or surface cracks. This approach was coupled to the internal variables generated from FE analysis. The simulation results fur the backward extrusion were compared with the experimental observation. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The formation of forming defects in the extruded tube was attributed to non-uniform distribution of strain, strain rate and temperatures in the extruded tubes for the given test conditions.

Communication Resource Allocation Strategy of Internet of Vehicles Based on MEC

  • Ma, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.389-401
    • /
    • 2022
  • The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.