• Title/Summary/Keyword: V-Q plane

Search Result 19, Processing Time 0.03 seconds

Experimental Study on Seepage Losses in Earth Channel (흙 수로에 대한 삼수손실량 추정에 관한 실험적 연구)

  • 정하우;유한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.1
    • /
    • pp.2853-2877
    • /
    • 1973
  • Models of cross-sections and channels were made in order to measure seepage losses. Cross-sections were made of sand, sandy clay loam and loam, their thicknesses being 30cm and 40cm, respectively. Flow depths kept in the cross-sections were 4cm, 6cm, 8cm and 10cm. Straight and curved channel models were provided so as to measure seepage losses, when constant water depths maintained at the heads of the channels were 7.3cm and 5.7cm, respectively. The results obtained in this experiment are presented as follows: 1) A cumulative seepage loss per unit length at a point in the channel varies in accordance with time and flow depth. The general equation of cumulative seepage loss may be as follows(Ref. to Table V.25): $$q_{cum}=\int_{o}^aq(a)dt+\int_a^bq(b)dt+\int_b^tq(c)dt$$ 2) In case that the variation of water depth through the channel is slight, the total seepage loss may be computed by applying the following general equation: $$\={q}_{cum}{\cdot}x=\int_o^tq_{cum}\frac{{\partial}x}{{\partial}t}dt$$ 3) Because seepage loss varies considerably according to water depth in case that the variation of flow depth through the channel is great, seepage loss should be computed by taking account of the change of flow depth. 4) The relation between time and traveling distance of water flow may be presented as the following general equation(Ref. to Table V.29): $$x=pt^r$$ 5) The ratios of the seepage losses of the straight channel to the curved channel are 1:1.03 for a flow depth of 7.3cm and 1:1.068 for that of 5.7cm. 6) The ratios of the seepage losses occurring through the bottom to those through the inclined plane in the channel cross-section are 1:2.24 for a water depth of 8cm and 1:2.47 for a depth of 10cm in case that soil-layer is 30cm in thickness. Similarly, those ratios are 1:2.62 and 1:2.93 in case of a soil-layer thickness of 40cm(Ref. to Table V.5).

  • PDF

SOME CHARACTERIZATIONS OF QUATERNIONIC RECTIFYING CURVES IN THE SEMI-EUCLIDEAN SPACE 𝔼24

  • Erisir, Tulay;Gungor, Mehmet Ali
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.67-83
    • /
    • 2014
  • The notion of rectifying curve in the Euclidean space is introduced by Chen as a curve whose position vector always lies in its rectifying plane spanned by the tangent and the binormal vector field t and $n_2$ of the curve, [1]. In this study, we have obtained some characterizations of semi-real spatial quaternionic rectifying curves in $\mathbb{R}^3_1$. Moreover, by the aid of these characterizations, we have investigated semi real quaternionic rectifying curves in semi-quaternionic space $\mathbb{Q}_v$.

Coordinated Voltage-Reactive Power Control Schemes Based on PMU Measurement at Automated Substations

  • Choi, Yun-Hyuk;Kang, Sang-Gyun;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1400-1407
    • /
    • 2015
  • This paper deals with methodology to control an automatic substation system. The control system can predict the power system condition by a voltage stability index (VSI). The strategies in this paper is called as Voltage-Reactive Power Control (VRPC), which regulates an abnormal voltage of a target substation by using coordination between tap changers and shunt capacitor/reactor. This method is efficient for better voltage profile. The monitoring substation includes whole of substations around the contingency event. The control quantities of the monitoring substations are decided by the calculation of the VSI, called as a Z-index. Case studies with BC Hydro-Quebec system are presented to illustrate this approach using real-time simulator.

Boron doping with fiber laser and lamp furnace heat treatment for p-a-Si:H layer for n-type solar cells

  • Kim, S.C.;Yoon, K.C.;Yi, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.322-322
    • /
    • 2010
  • For boron doping on n-type silicon wafer, around $1,000^{\circ}C$ doping temperature is required, because of the relatively low solubility of boron in a crystalline silicon comparing to the phosphorus case. Boron doping by fiber laser annealing and lamp furnace heat treatment were carried out for the uniformly deposited p-a-Si:H layer. Since the uniformly deposited p-a-Si:H layer by cluster is highly needed to be doped with high temperature heat treatment. Amorphous silicon layer absorption range for fiber laser did not match well to be directly annealed. To improve the annealing effect, we introduce additional lamp furnace heat treatment. For p-a-Si:H layer with the ratio of $SiH_4:B_2H_6:H_2$=30:30:120, at $200^{\circ}C$, 50 W power, 0.2 Torr for 30 min. $20\;mm\;{\times}\;20\;mm$ size fiber laser cut wafers were activated by Q-switched fiber laser (1,064 nm) with different sets of power levels and periods, and for the lamp furnace annealing, $980^{\circ}C$ for 30 min heat treatment were implemented. To make the sheet resistance expectable and uniform as important processes for the $p^+$ layer on a polished n-type silicon wafer of (100) plane, the Q-switched fiber laser used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the fiber laser treatment showed the trade-offs between the lifetime and the sheet resistance as $100\;{\omega}/sq.$ and $11.8\;{\mu}s$ vs. $17\;{\omega}/sq.$ and $8.2\;{\mu}s$. Diode level device was made to confirm the electrical properties of these experimental results by measuring C-V(-F), I-V(-T) characteristics. Uniform and expectable boron heavy doped layers by fiber laser and lamp furnace are not only basic and essential conditions for the n-type crystalline silicon solar cell fabrication processes, but also the controllable doping concentration and depth can be established according to the deposition conditions of layers.

  • PDF

Study on Fiber Laser Annealing of p-a-Si:H Deposition Layer for the Fabrication of Interdigitated Back Contact Solar Cells (IBC형 태양전지 제작을 위한 p-a-Si:H 증착층의 파이버 레이저 가공에 관한 연구)

  • Kim, Sung-Chul;Lee, Young-Seok;Han, Kyu-Min;Moon, In-Yong;Kwon, Tae-Young;Kyung, Do-Hyun;Kim, Young-Kuk;Heo, Jong-Kyu;Yoon, Ki-Chan;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.430-430
    • /
    • 2008
  • Using multi plasma enhanced chemical vapor deposition system (Multi-PECVD), p-a-Si:H deposition layer as a $p^+$ region which was annealed by laser (Q-switched fiber laser, $\lambda$ = 1064 nm) on an n-type single crystalline Si (100) plane circle wafer was prepared as new doping method for single crystalline interdigitated back contact (IBC) solar cells. As lots of earlier studies implemented, most cases dealt with the excimer (excited dimer) laserannealing or crystallization of boron with the ultraviolet wavelength range and $10^{-9}$ sec pulse duration. In this study, the Q-switched fiber laser which has higher power, longer wavelength of infrared range ($\lambda$ = 1064 nm) and longer pulse duration of $10^{-8}$ sec than excimer laser was introduced for uniformly deposited p-a-Si:H layer to be annealed and to make sheet resistance expectable as an important process for IBC solar cell $p^+$ layer on a polished n-type Si circle wafer. A $525{\mu}m$ thick n-type Si semiconductor circle wafer of (100) plane which was dipped in a buffered hydrofluoric acid solution for 30 seconds was mounted on the Multi-PECVD system for p-a-Si:H deposition layer with the ratio of $SiH_4:H_2:B_2H_6$ = 30:120:30, at $200^{\circ}C$, 50 W power, 0.2 Torr pressure for 20 minutes. 15 mm $\times$ 15 mm size laser cut samples were annealed by fiber laser with different sets of power levels and frequencies. By comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 50 mm/s of mark speed, 160 kHz of period, 21 % of power level with continuous wave mode of scanner lens showed the features of small difference of lifetime and lowering sheet resistance than before the fiber laser treatment with not much surface damages. Diode level device was made to confirm these experimental results by measuring C-V, I-V characteristics. Uniform and expectable boron doped layer can play an important role to predict the efficiency during the fabricating process of IBC solar cells.

  • PDF

Power Semiconductor SMD Package Embedded in Multilayered Ceramic for Low Switching Loss

  • Jung, Dong Yun;Jang, Hyun Gyu;Kim, Minki;Jun, Chi-Hoon;Park, Junbo;Lee, Hyun-Soo;Park, Jong Moon;Ko, Sang Choon
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.866-873
    • /
    • 2017
  • We propose a multilayered-substrate-based power semiconductor discrete device package for a low switching loss and high heat dissipation. To verify the proposed package, cost-effective, low-temperature co-fired ceramic, multilayered substrates are used. A bare die is attached to an embedded cavity of the multilayered substrate. Because the height of the pad on the top plane of the die and the signal line on the substrate are the same, the length of the bond wires can be shortened. A large number of thermal vias with a high thermal conductivity are embedded in the multilayered substrate to increase the heat dissipation rate of the package. The packaged silicon carbide Schottky barrier diode satisfies the reliability testing of a high-temperature storage life and temperature humidity bias. At $175^{\circ}C$, the forward current is 7 A at a forward voltage of 1.13 V, and the reverse leakage current is below 100 lA up to a reverse voltage of 980 V. The measured maximum reverse current ($I_{RM}$), reverse recovery time ($T_{rr}$), and reverse recovery charge ($Q_{rr}$) are 2.4 A, 16.6 ns, and 19.92 nC, respectively, at a reverse voltage of 300 V and di/dt equal to $300A/{\mu}s$.

Low Phase Noise VCO Using the Metamaterial Broadside Coupled Spiral Resonator (메타 구조 Broadside Coupled 나선형 공진기를 이용한 저위상 잡음 전압 제어 발진기)

  • Han, Kyoung-Nam;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.961-966
    • /
    • 2009
  • In this paper, a novel voltage-controlled oscillator(VCO) using the metamaterial broadside coupled spiral resonators(BC-DSRs) is presented for reducing the phase noise. For reducing of the phase noise, the series spiral structures have been applied for the signal plane and ground plane at each in order to have the large coupling. Compared with the conventional VCO, the proposed VCO has the larger coupling coefficient constant, which makes a higher Q-factor and has reduced the phase noise of the VCO. The proposed VCO has the phase noise of $-121{\sim}-117.16\;dBc$/Hz at 100 kHz in the tuning range, $5.749{\sim}5.853\;GHz$. The figure of merit(FOM) of this VCO is $-198.45{\sim}-194.77\;dBc$/Hz at 100 Hz in the same tuning range, respectively.

Strength and failure characteristics of the rock-coal combined body with single joint in coal

  • Yin, Da W.;Chen, Shao J.;Chen, Bing;Liu, Xing Q.;Ma, Hong F.
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1113-1124
    • /
    • 2018
  • Geological dynamic hazards during deep coal mining are caused by the failure of a composite system consisting of the rock and coal layers, whereas the joint in coal affects the stability of the composite system. In this paper, the compression test simulations for the rock-coal combined body with single joint in coal were conducted using $PFC^{2D}$ software and especially the effects of joint length and joint angle on strength and failure characteristics in a rock-coal combined body were analyzed. The joint length and joint angle exhibit a deterioration effect on the strength and affect the failure modes. The deterioration effect of joint length of L on the strength can be neglected with a tiny variation at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ between the loading direction and joint direction. While, the deterioration effect of L on strength are relatively large at ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$. And the peak stress and peak strain decrease with the increase of L. Additionally, the deterioration effect of ${\alpha}$ on the strength becomes larger with the increase of L. With the increase of ${\alpha}$, the peak stress and peak strain first decrease and then increase, presenting "V-shaped" curves. And the peak stress and peak strain at ${\alpha}$ of $45^{\circ}$ are the smallest. Moreover, the failure mainly occurs within the coal and no apparent failure is observed for rock. At ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$, the secondary shear cracks generated in or close to the joint tips, cause the structural instability failure of the combined body. Therefore, their failure models present as a shear failure along partial joint plane direction and partially cutting across the coal body or a shear failure along the joint plane direction. However, at ${\alpha}$ of $60^{\circ}$ and L of 10 mm, the "V-shaped" shear cracks cutting across the coal body cause its final failure. While crack nucleations at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ are randomly distributed in the coal, the failure mode shows a V-shaped shear failure cutting across the coal body.

Development of high-strength ion nitrided gear (고강도 이온질화 기어의 개발)

  • Kim, Young-Hoon;Sun, Cheol-Gon;Kim, Han-Goon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.184-189
    • /
    • 1994
  • The heat treatment charaterristic of SCM 440 and B 16 steels has been investigated in various condition(A, B and C) to the effect of heat treatment on mechanical properties, and the following results were obtained. 1. We are obtained a good nitriding characteristic in bainitic structure than other heat treatment cycle in our experiment. 2. Fatigue characteristic has shown in order of B)C)A condition as heat treatment cycle. 3. The effective hardening depth and fatigue characteristic has been excellented in B 16 than SCM 440 after the nitriding and Q. T for Band C condition. 4. Nitriding depth has been increased in addition of Cr, V and the nitriding efficiency is increased as easiness of banite formation to wide range of cooling rate by addition of Mo. 5. The depth of compound layer in parallel surface, notched slop plane and notched bottom has been varied to the nitriding depth of 5, 4 and 3 ${\mu}$ in relatively uniform pattern after 10h nitriding treatment for SCM 440 into A condition.

  • PDF