• Title/Summary/Keyword: V-벨트풀리

Search Result 7, Processing Time 0.019 seconds

Development of V Belt Pulley Design/Analysis System (V 벨트용 풀리 설계/해석 시스템 개발)

  • 이강수;홍종해;손종호;이상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.209-218
    • /
    • 2002
  • A V belt pulley is widely used in automotive industry. More than tow pulleys in one automobile are used, such items as crankshaft, water pump, air-con compressor and power steering pump. Although the shape and usage of pulleys are very simple, the design evaluation of a pulley design is difficult because the load conditions and the installation environment are complicated. So, we formulated the design evaluation for the V belt pulley by using CAE system, which enables to develop a design automation system. By using this system, an engineer can evaluate a pulley design easily without any painstaking effort, such as consideration of the complicated loads and CAE activities. Also the system helps to accumulate the design experience of a company, which guides the optimum design based on experience.

A Study on the Product Design and Prototype Manufacturing of a Plastic V-Belt Pulley (플라스틱 V-벨트 풀리 설계 및 시작품 제작에 관한 연구)

  • Son, Tae-Yil;Rim, Jae-Kyu;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.281-286
    • /
    • 2001
  • In this study, product design and prototype manufacturing of a plastic water-pump pulley has been tried. The designed model is supposed to be made of 33 % glass reinforced resin of which the tensile strength is 180 MPa, and has 24 ribs on each side to increase its structural strength. Structural analysis under a static load of 300 kgf acting on both edges of the belt has been carried out using a commercial finite element code, MARC. The analysis result showed the maximum effective stress near a rib of designed model would be at most 35 MPa (less than 20% of the tensile strength), therefore, the plastic product would be sufficiently safe under that loading condition. On the basis of the structural analysis, a prototype of the designed model has been manufactured by using the fused deposition modelling (FDM) method which is one of the rapid prototyping (RP) methods, using ABS resin and support materials. The CAD data exported to the RP system in STL format was prepared by a commercial solid modeling software, SolidWorks. It has been proved that the plastic pulley can successfully replace the existing flow-formed steel product.

  • PDF

Study on Shift characteristic of Small reducer using Eccentric arm (편심캠을 이용한 소형감속기의 변속특성에 관한 연구)

  • Youm, Kwang-Wook;Ham, Seong-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.609-614
    • /
    • 2017
  • In this study, a new type of eccentric cam was used for the development of a small size reducer with a two-shift reduction ratio while maintaining the same volume as the existing one-shift speed reducer. Therefore, a two-shift speed reducer was designed using the concept of a continuously variable transmission applied to automobiles. The cam was designed to have an eccentric shape with a $180^{\circ}$ phase difference to act as a tensioner to minimize slip by squeezing the V-belt connected to the deceleration pulley and the acceleration pulley, respectively. The cam was designed to have a diameter of 35mm and an outer diameter of 18mm so that the outer portion of the v-belt could contact the cam perfectly. A pulley with a diameter of 50.8mm was installed on the low speed pulley input shaft for deceleration and a pulley with a diameter of 76.2mm was provided on the output shaft. In the high-speed pulley for acceleration, a pulley with a diameter of 76.2mm is provided on the input shaft, and a pulley with a diameter of 50.8mm is provided on the output shaft. Based on the design details, the power transmission efficiency test and the heating characteristics of the transmission were tested to verify the feasibility. In addition, through validation, the suitability of the reducer was demonstrated.

Stiffness Improvement of Timing Belt in Power Transmission (동력전달용 타이밍벨트의 강성 개선)

  • Lee, Kyeong-Yeon;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • As a power transmission element, the timing belt is a toothed transmission belt that takes advantages of V-belts and gears. It has characteristics of non-slip and low noise. It is used as a power transmission device when transmitting power from a rotating shaft or linear motion in a mechanism. Rotation can be accurately transmitted through a belt pulley with grooves like a gear and a timing belt with grooves to precisely match with the belt pulley. In particular, in the mechanism in which the timing belt is used for the output shaft, the dynamic characteristics including the rigidity of the timing belt determine the transmission characteristics of the system, so its importance increases. In this paper, a stiffness reinforced belt that can be applied to a timing belt with a limited range of motion to increase its stiffness is proposed. To study the dynamic characteristics of the stiffness reinforced belt, the equation of motion for the stiffness reinforced belt was established, and a simulation model for the stiffness reinforced belt was created and analyzed. In order to confirm the analysis results of the motion equation and simulation model, a 1-axis rotation experimental equipment using a stiffness reinforcing belt was developed and the experiment was conducted. Through motion equations, simulation models, and experiment results, it was confirmed that the stiffness and dynamic characteristics of the timing belt could be improved by applying the proposed stiffness reinforcement belt.

A Finite Element Simulation of the V-Belt Pulley Spinning Process (V-벨트 풀리 스피닝 성형공정의 유한요소 시뮬레이션)

  • Kim S. J.;Kim H. R.;Lee T. K.;Kim Y. S.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.81-84
    • /
    • 2001
  • Some trials to simulate the spinning process by which V-belt pulley is usually being manufactured are done in this study. 2D finite element analysis (FEA) for the whole process to produce a mono-typed pulley including preforming, 1st spinning, axial compression and 2nd spinning processes is carried out using the commercial code $DEFORM2D^{TM}$. The sectional shape after each process is compared with that of real product. The deformed shape obtained from the FEA, on the whole, coincides with the experimental result well, but the thickness around the bottom of the V-groove is somewhat different each other.

  • PDF

Control Strategy of Ratio Changing System for a Metal V-Belt CVT Adopting Primary Pressure Regulation (압력제어 방식 금속 벨트 CVT 변속비 제어 전략)

  • 최득환;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.201-208
    • /
    • 2002
  • In this paper, the control strategy of ratio changing system for a metal belt CVT adopting primary pressure regulation is developed, and the shirting performance of pressure regulating type CVT with the suggested control strategy is investigated. The control strategy suggested in this study is composed of 2 feedback loop, one is speed ratio feedback and the other is primary pressure feedback. The pressure feedback is adopted to ensure prohibiting a belt slip during transient period in a fast downshift mode. Simulation results show that the system with suggested control strategy gives appropriate response time and tracking Performance for upshift and also gives a proper primary pressure which can prohibit the belt slip. In addition, it is fecund that the given system has an acceptable servo property in tracking the target speed ratio and robustness for the disturbance of line pressure.