• Title/Summary/Keyword: V 화염

Search Result 79, Processing Time 0.026 seconds

Effect of Secondary Flow on a Premixed Flame in the U-bend Nozzle (U-곡관 노즐에서 예혼합화염에 미치는 이차 유동의 영향)

  • Kim, H.G.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.91-101
    • /
    • 1998
  • The effect of secondary flow on both methane/air and propane/air premixed flame was investigated experimentally. By changing the radius of curvature, various flame behavior was observed. In the V-bend nozzles, flame surface is deformed from axisymmetry. As the exit velocity increased, flame lifted off partially. When the radius of curvature of the V-bend increased, the region where premixed flame is entirely on the rim increased. Since the axial velocity field is changed due to the secondary flow effect, comparison of V-bend and straight tube with the same diameter shows larger V-bend nozzle exit velocity for both flash back and flame blowout. The flame characteristics are mapped with a equivalence ratio, a velocity, and a nozzle radius of curvature. To identify physical reasoning on the flame surface deformation, numerical calculations are conducted. OH radical distributions in flames are visualized by PLIF technique.

  • PDF

Assessment of the Combustion Diffusion Pattern and Fire Risk of a Water Purifier Damaged by a General Fire (일반화염에 의해 소손된 정수기의 연소 확산 패턴 및 화재위험성 평가)

  • Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.35-39
    • /
    • 2012
  • This paper analyzes the combustion diffusion pattern when a water purifier is artificially ignited outside and inside in order to provide data to examine the cause of fire of a water purifier damaged by fire. The analysis result of the combustion diffusion pattern of a water purifier shows that the combustion diffused at a higher speed when it was ignited inside the purifier than when ignited outside. It took approximately 360 seconds for the water purifier to be half-burned when ignited on the outside, and approximately 180 seconds when ignited from inside. That is, it is thought that the internal combustion speed is higher because the internal ignition causes the generated heat to be accumulated and radiated instantly. It was observed that the water purifier damaged by fire caused by external ignition showed a uniform carbonization pattern and the carbide burned down at the bottom were gradually deposited. The water purifier damaged by internal ignition showed a relatively clear boundary of carbonized surface, which formed a V-pattern. The difference in the combustion patterns presents an objective base from which to determine where the fire started. By the time the purifier was half-burned by fire, the built-in fuse had not melted and the power supply protection device did not operate. In addition, as was found in the case of the fuse damaged by a general fire, carbonization occurred at the metal holder, and it is thought that this fact may be used as a basis from which to determine the cause of a fire.

Preparation of TiO2:Fe,V nanoparticles by flame spray pyrolysis and photocatalytic degradation of VOCs (화염분무열분해법을 이용한 TiO2:Fe,V 나노분말의 제조 및 VOCs 분해 특성)

  • Chang, Han Kwon;Jang, Hee Dong;Kim, Tae-Oh;Kim, Sun Kyung;Choi, Jin Hoon
    • Particle and aerosol research
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Fe- and V-doped titanium dioxide nanoparticles consisting of spherical primary nanoparticles were synthesized from a mixed liquid precursor by using the flame spray pyrolysis. The effects of dopant concentration on the powder properties such as morphology, crystal structure, and light adsorption were analyzed by TEM, XRD, and UV-Vis spectrophotometer, respectively. As the V/Ti molar ratio increased, pure anatase particles were synthesized. On the contrary, rutile phase particles were synthesized as the Fe/Ti ratio increased. Photocatalytic property of as-prepared $TiO_2:Fe,V$ nanoparticles was investigated by measuring the removal efficiency for volatile organic compounds (VOCs) under the irradiation of visible light. After 2 hrs under visible light, the removal efficiencies of benzene, p-xylene, ethylbenzene, and toluene were reached to 21.9%, 21.4%, 19.8% and 17.6% respectively.

  • PDF

Development and Operation of Air Cooling System for 154kV Power Transformer (154kV 변압기 공냉형 수냉식 냉각설비 개발 및 운전)

  • Min, Byeong-Wook;Shin, Myoung-Sik;Cho, Hwan-Gu;Choi, Joon-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.932-933
    • /
    • 2011
  • 지속적인 경제발전 및 이상 기후변화 등으로 인한 전력수요의 지속적 증가로 2010년에 최대 66,511MW, 2011년에는 4월 현재까지 최대 68,154MW를 기록하고 있어 원활한 전력공급을 위한 전력설비의 지속적인 건설이 요구되고 있다. 그러나 건설지역 주민들의 민원 등으로 인해 건설은 갈수록 어려워지고 있는 실정이다. 한전에서는 변전소 건설의 경제성을 확보하고 변전소 건설 부지면적 및 건물면적을 최소화한 154kV Compact형 변전소를 개발하게 되었다. 이를 위해서는 변전소 면적의 상당부분을 차지하고 있는 변압기 설치면적 최소화가 필수적이다. 이를 위해 변압기 설치공간 최소화하고 냉각효율 및 민원 등을 고려한 냉매냉각방식(HCFC:Hydro Chloro Carbons, 수소화염화불화탄소)의 적용을 추진하였으나 HCFC는 오존파괴물질로 규정되어 생산과 수입이 규제될 예정으로 한전은 냉매냉각방식의 대안으로 기존 수냉식 냉각방식의 환경문제, 냉각탑 관리의 어려움 등과 물 비산에 따른 상하수도 이용요금 부담 등의 단점을 개선한 공냉형 수냉식 냉각방식을 개발하게 되었다. 본 논문에서는 154kV 변압기 공냉형 수냉식 냉각방식의 개발내용 및 운전현황에 대해 기술하고자 한다.

  • PDF

Am Experimental Study on Measurement of Number Density and Temperature Distributions in $C_3H_8/O_2$ Flame by UV Laser Rayleigh Scattering (UV Laser Rayleigh Scattering을 이용한 $C_3H_8/O_2$ 화염에서 가스 성분의 농도 및 온도 분포 계측에 관한 실험적 연구)

  • Jin, S. H;Nam, G. J.;Kim, H. S.;Chang, N. K.;Park, S. H.;Kim, U.;Park, K. S.;Kim, G. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.60-68
    • /
    • 1997
  • Rayleigh Scattering Cross Sections($\sigma$i) of various gases and the temperature distributions of premixes C3H8/O2 flame are measured by high power KrF(248nm) Exci- mer laser and ICCD camera. Results show that $\sigma$i of O2 and Propane(C3H8) gases agree well in the 5% error range, but of H2 has the more or less difference from the calcul- ated value by other groups. This is attributed to the low RS signal of H2 to Nosie level(S/N ratio). The temperature distributions of flame range out between 300K in the air and about 2000K in the burned area. In this temperature range, out system has the about 250K temperature resolution. Because low RS signals in the reaction area with high temperature are affected highly by noises, temperature uncertainty of this area is relatively high to another part of flame. Experimental results show that UV Rayleigh Scattering can be used for the measurement of mixing ratio of mixed gases and the temperature distributions of flame. Especially, this technique can be applied for the measurement of the mixing ratio of air/fuel before the ignition and the flame structure after the ignition inside the Engine.

  • PDF

Hazard Evaluation of Minimum Ignition Energy by Electrostatic Voltage in Suspended Dust Particles (부유 분진의 정전압에 의한 최소착화에너지 위험성평가)

  • Han, Oue-Sup
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.359-365
    • /
    • 2021
  • We investigated experimentally the ignition characteristic of dust and the hazard evaluating for electrostatic discharge. The ignition energy experiments were performed on sample dusts such as PE(HD), PE(LD), PMMA using the MIKE-3 apparatus. The formation of flame during the ignition of PE(HD) dust clouds occurred after the delay time of about 8 ms, and the flame kernels were not observed in center of ignition occurrence area. The voltage increased with increasing the number of dust dispersions and the increase rate of measured voltage with dust concentration was the highest in the order of PMMA, PE(LD) and PE(HD). For the effect of dispersion condition on the voltage in PE(HD) dust, the results were obtained that the voltage increased as the number of dispersions increased and as the concentration increased under the same dispersion number. The safety voltages to prevent fire and explosions by electrostatic ignition were estimated that PE(HD), PE(LD)-1, PE(LD)-2, and PMMA were 2.58, 44.72, 25.82, and 8.16 kV, respectively. We proposed the method for estimating the minimum ignition energy by using the measured voltage data for efficient investigation of electrostatic ignition hazard.

Behavior of the Edge Flame on Flame Extinction in Buoyancy minimized Methane-Air Non-premixed Counter Triple Co-flow Flames (부력을 최소화한 대향류 삼축 메탄-공기 비예혼합 화염 소화에서 에지화염의 거동)

  • Park, Jin Wook;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.81-84
    • /
    • 2014
  • A Experimental study on flame extinction behavior was investigated using He curtain flow with counter triple co-flow burner. Buoyancy force was suppressed up to a microgravity level of $10^{-2}-10^{-3}g$ by using He curtain flow. The stability maps were provided with a functional dependency of diluent mole fraction and global strain rate to clarify the differences in flame extinction behavior. The flame extinction curves had C-shapes at various global strain rates. The oscillation and extinction modes were different each other in terms of the global strain rate, and the flames extinction modes could be classified into five modes such as (I) and (II): an extinction through the shrinkage of the outmost edge flame forward the flame center after self-excitation and without self-excitation, respectively, (III): an extinction through rapid advancement of a flame hole while the outmost edge flame is stationary, (IV): self-excitation occurs in the outermost edge flame and the center edge flame and then a donut shaped flame is formed and/or the flame is entirely extinguished, (V): shrinkage of the outermost edge flame without self-excitation followed by shrinkage or survival of the center flame. These oscillation and extinction modes could be identified well to the behavior of edge flame. The result also showed that the edge flame was influenced significantly by the conductive heat losses to the flame center or ambient He curtain flow.

  • PDF

Observation of Soot Behavior in Diffusion Flame according to Surrounding Air Velocity (분위기유속에 따른 확산화염내 매연거동파악)

  • Choi, Jae-Hyuk;Park, Won-Seok;Yoon, Seok-Hun;Oh, Cheol;Kim, Myoung-Hwan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.254-255
    • /
    • 2005
  • The effect of surrounding air velocity on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. An ethylene($C_2H_4$) diffusion flame was formed around a cylindrical rod burner in surrounding air velocity of $v_{air}$=2.5, 5, and 10 cm/s with oxygen concentration of 35 % and wall temperature of 300 K. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results show that the soot particle distribution region moves closer to the surface of the wall with increasing surrounding air velocity. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results successfully predicted the differences in the motion of soot particles by different surrounding air velocity near the burner surface and are in good agreement with observed soot behavior in microgravity. A comparison of the calculations and experimental results led to the conclusion that a consideration of the thermophoretic effect is essential to understand the soot deposition on walls.

  • PDF

Electrical characteristics of soot particles in a LPG diffusion flame and particle size change by electric fields (LPG 확산화염내 매연입자의 전기적 특성 및 전기장에 의한 입자 크기 변화)

  • Park, Jong-In;Ji, Jun-Ho;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1326-1338
    • /
    • 1997
  • Electrical characteristics of soot particles in a LPG diffusion flame were studied for the control of soot particle coagulation. When a DC voltage was applied between two electrodes installed parallel to gas flow, ionic wind effect caused soot deposition on the cathode, implying that most of the soot particles were positively charged. Soot deposit on the cathode linearly increased and was saturated with respect to the strength of the applied voltage. The possibility of applying an AC voltage to enhance the particle coagulation was then investigated and the efficiency of the size control was checked with transmission electron microscope photographs. For the amplitude of 2 kV AC field, primary (spherical) soot particle size decreased from 30 ~ 40 nm to around 20 nm when the frequency of the applied AC voltage was 60 Hz and higher. Collisions between the soot particles in such a selected AC condition could lead to the formation of much bigger agglomerates of roughly 1-5 .mu.m in size.