• Title/Summary/Keyword: V/UHF

Search Result 101, Processing Time 0.03 seconds

IEEE 802.22 시스템을 위한 다중 안테나 기법의 성능 비교, 분석

  • Jeong Ho-Cheol;Park Hyeong-Rae;Song Myeong-Seon;Kim Chang-Ju
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.58
    • /
    • pp.61-70
    • /
    • 2006
  • In this paper, we compare the performance of representative MIMO techniques such as space-time block code, closed-loop transmit diversity, and V-BLAST, etc., in IEEE 802.22 environments. We first develope deco-ding algorithms of the representative MIMO techniques and design a MIMO-OFDM system employing QPSK, 16 QAM, 64 QAM to cover several transmission rates. Since the frequency band used for IEEE 802.22 systems belongs mostly to V/UHF band and the angular spread of the received signal at the base station is very small, there Is a significant correlation between the signals from transmit antennas. Thus, in this paper, we compare the performance of MIMO-OFDM systems employing only two Tx antennas in correlated fading environments.

VCO fabrication using Microstrip Line operating at the UHF frequency band (UHF대역에서 동작하는 마이크로스트립라인을 이용한 VCO 제작)

  • Rhie, Dong Hee;Jung, Jin-Hwee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.55-58
    • /
    • 2001
  • In this paper, we present the results of the design and fabrication of the VCO(Voltage controlled Oscillator) using RF circuit simulator GENESYS and electromagnetic field simulator EMpower Frequency range is fabricated VCO is 850 MHz ~ 950 MHz, which is used Colpitts Circuit. the fabricated VCO is consisted of resonator, oscillator and MSL(Microstrip Line) is used in LC tuning circuit.(operated by negative feedback) MSL(Microstrip Line), Varactor(Plastic package), low noise TR(SOT-23), chip inductor(1608), chip capacitor(1005), chip resistance(1005). 1005 type is used for sample fabrication of VCO. In the fabrication process, circuit pattern is screen printed on the alumina substrates of over 99.9% purity. Center frequency of the sample VCO is 850MHz at $V_T=1.5V$, while the simulated value was 1.0GHz at $V_T=1.5V$. Variable frequency range of the sample is 860~950MHz in contrast to the 1068~1100MHz of the simulated values.

  • PDF

VCO fabrication using Microstrip Line operating at the UHF frequency band (UHF대역에서 동작하는 마이크로스트립라인을 이용한 VCO 제작)

  • Rhie, Dong-Hee;Jung, Jin-Hwee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.153-156
    • /
    • 2001
  • In this paper, we present the results of the design and fabrication of the VCO(Voltage controlled Oscillator) using RF circuit simulator GENESYS and electromagnetic field simulator EMpower Frequency range is fabricated VCO is 850 MHz ~ 950 MHz, which is used Colpitts Circuit. the fabricated VCO is consisted of resonator, oscillator and MSL(Microstrip Line) is used in LC tuning circuit.(operated by negative feedback) MSL(Microstrip Line), Varactor(Plastic package), low noise TR(SOT-23), chip inductor(1608), chip capacitor(1005), chip resistance(1005). 1005 type is used for sample fabrication of VCO. In the fabrication process, circuit pattern is screen printed on the alumina substrates of over 99.9% purity. Center frequency of the sample VCO is 850MHz at $V_T$=1.5V, while the simulated value was 1.0GHz at $V_T$=1.5V. Variable frequency range of the sample is 860~950MHz in contrast to the 1068~1100MHz of the simulated values.

  • PDF

TV 대역의 Spectrum Overlay 기술의 Spectral Efficiency 분석

  • Im, Cha-Sik;Lee, Jae-Yong;Gang, Hyeon-Deok;Kim, Chang-Ju;Kim, Bong-Seok;Gang, Seong-Cheol
    • Information and Communications Magazine
    • /
    • v.24 no.9
    • /
    • pp.15-21
    • /
    • 2007
  • 유비쿼터스 사회의 도래에 따른 전파자원의 부족현상을 해결하고 스펙트럼 이용효율을 증가시키기 위해 cognitive radio(CR) 기술을 이용하여 전파특성이 우수한 V/UHF 주파수 자원을 공유하는 기술이 최근에 각광을 받고 있다. 본 논문에서는 CR기술에 대한 소개와 더불어 IEEE802.22 WRAN working group에서 검토되고 있는 CR기술을 이용한 V/UHF 대역의 주파수 자원 공유를 통해 얻을 수 있는 스펙트럼 이용효율을 분석하였다. DTV 및 WRAN 시스템 파라미터와 제안된 공유 시나리오를 바탕으로 시뮬레이션을 통해 분석한 결과, CR 기술 도입시 스펙트럼 효율은 수백 배 이상이 향상되고, 커버리지 효율도 배 이상 향상됨을 알 수 있었다.

Design of V/UHF-Band SP3T Transmitting/Receiving Switch (V/UHF 대역 SP3T 송수신 스위치 설계)

  • Lee, Byeong-Nam;Park, Dong-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.34-41
    • /
    • 2008
  • This paper describes the design of SP3T PIN diode switch which has a 500W high power handling capability in $20{\sim}400MHz$ frequency range. Design factors were investigated and it was confirmed by simulation that the characteristics of insertion loss, VSWR, and isolation met design goal. Also, the capability to handle 500W high power with very fast switching speed of less than $26{\mu}s$ was confirmed and insertion loss of less than 1dB, VSWR of less than 1.4:1, and isolation of higher than 60dB were obtained by experiments.

A Survey on Modulation Methods for Narrow Bandwidth of Wireless Channel (무선채널의 협대역화에 따른 변조방식 고찰)

  • Park, S.Y.;Lee, H.S.
    • Electronics and Telecommunications Trends
    • /
    • v.9 no.4
    • /
    • pp.131-138
    • /
    • 1994
  • 최근 무선통신의 활성화에 따라, V/UHF(very/ultra high Frequency) 대역에서 한정된 주파수를 효율적으로 이용하기 위한 방법의 하나로서, 점차 점유 주파수 대역의 폭을 축소하여 보다 많은 이용자를 수용하도록 무선 채널의 협대역화가 추진되고 있다. 본 고에서는 먼저 V/UHF 대역 무선 통신에서 채널의 협대역화에 관련된 기술 중에서 현재까지 사용되고 있는 FM(frequency modulation), AM(amplitude modulation) 변조 방식의 장,단점을 살펴본후, 새로운 LM(linear modulation) 변조 방식에 대한 기술적 배경 및 특성을 알아보았다. LM은 SSR(single side band)-AM이 발전한 것으로서, TTIB(transparent tone-in-band), CLT(Cartesian loop transmitter), FFSR(feed-forward signal regeneration), DSP(digital signal processing)등 4가지의 기술이 결합하여 만들어진 것이다. LM 방식에 사용된 4가지 기술을 소개하고, 기존의 변조 방식에 비해 개선된 사항에 대해 서술한다.

Estimation of the Convective Boundary Layer Height Using a UHF Radar (UHF 레이더를 이용한 대류 경계층 고도의 추정)

  • 허복행;김경익
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2001
  • The enhancement of the refractive index structure parameter $C_n^2$ often occurs where vertical gradients of virtual potential temperature ${\theta}_v$ and mixing ratio q have their maximum values. The $C_n^2$ can be a very useful parameter for estimating the convective boundary layer(CBL) height. The behavior of $C_n^2$ peaks, often used to locate the height of mixed layer, was investigated in the present study. In addition, a new method to determine the CBL height objectively using both $C_n^2$ and vertical air velocity variance ${\sigma}_w$ data of UHF radar was also suggested. The present analysis showed that the $C_n^2$ peaks in the backscatter intensity profiles often occurred not only at the top of the CBL but also at the top of a residual layer or at a cloud layer. The $C_n^2$ peaks corresponding to the CBL heights were slightly lower than the CBL heights derived from rawinsonde sounding data when vertical mixing owing to weak solar heating was not significant and the height of strong vertical ${\theta}_v$ gradients were not consistent with that of strong vertical q gradients. However, the $C_n^2$ peaks corresponding to the CBL heights were in good agreement with the rawinsonde-estimated CBL hegiths when vertical mixing owing to solar heating was significant and the vertical gradient of both ${\theta}_v$ and q in the entrainment zone was very strong. The maximum backscatter intensity method, which determines the height of $C_n^2$ peak as the CBL height, correctly estimated the CBL height when the $C_n^2$ profile had single peak, but this method erroneously estimated the CBL height when there was a residual layer or a cloud layer over the top of the CBL. The new method distinguished when there the CBL height from the peak due a cloud layer or a residual layer using both $C_n^2$ and ${\sigma}_w$ data, and correctly estimated the CBL height. As for estimation of diurnal variation of the CBL height, the new method backscatter intensity method even if the vertical profile of backscatter intensity had two peaks from the CBL height and a residual layer or a cloud layer.

A Low-power EEPROM design for UHF RFID tag chip (UHF RFID 태그 칩용 저전력 EEPROM설계)

  • Yi, Won-Jae;Lee, Jae-Hyung;Park, Kyung-Hwan;Lee, Jung-Hwan;Lim, Gyu-Ho;Kang, Hyung-Geun;Ko, Bong-Jin;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.486-495
    • /
    • 2006
  • In this paper, a low-power 1Kb synchronous EEPROM is designed with flash cells for passive UHF RFID tag chips. To make a low-power EEPROM, four techniques are newly proposed. Firstly, dual power supply voltages VDD(1.5V) and VDDP(2.5V), are used. Secondly, CKE signal is used to remove switching current due to clocking of synchronous circuits. Thirdly, a low-speed but low-power sensing scheme using clocked inverters is used instead of the conventional current sensing method. Lastly, the low-voltage, VDD for the reference voltage generator is supplied by using the Voltage-up converter in write cycle. An EEPROM is fabricated with the $0.25{\mu}m$ EEPROM process. Simulation results show that power dissipations are $4.25{\mu}W$ in the read cycle and $25{\mu}W$ in the write cycle, respectively. The layout area is $646.3\times657.68{\mu}m^2$.

Fabrication and Characteristics of a Varactor Diode for UHF TV Tuner Operated within Low Tuning Voltage (저전압 UHF TV 튜너용 바렉터 다이오드의 제작 및 특성)

  • Kim, Hyun-Sik;Moon, Young-Soon;Son, Won-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2014
  • The width of depletion region in a varactor diode can be modulated by varying a reverse bias voltage. Thus, the preferred characteristics of depletion capacitance can obtained by the change in the width of depletion region so that it can select only the desirable frequencies. In this paper, the TV tuner varactor diode fabricated by hyper-abrupt profile control technique is presented. This diode can be operated within 3.3 V of driving voltage with capability of UHF band tuning. To form the hyperabrupt profile, firstly, p+ high concentration shallow junction with $0.2{\mu}m$ of junction depth and $1E+20ions/cm^3$ of surface concentration was formed using $BF_2$ implantation source. Simulation results optimized important factors such as epitaxial thickness and dose quality, diffusion time of n+ layer. To form steep hyper-abrupt profile, Formed n+ profile implanted the $PH_3$ source at Si(100) n-type epitaxial layer that has resistivity of $1.4{\Omega}cm$ and thickness of $2.4{\mu}m$ using p+ high concentration Shallow junction. Aluminum containing to 1% of Si was used as a electrode metal. Area of electrode was $30,200{\mu}m^2$. The C-V and Q-V electric characteristics were investigated by using impedance Analyzer (HP4291B). By controlling of concentration profile by n+ dosage at p+ high concentration shallow junction, the device with maximum $L_F$ at -1.5 V and 21.5~3.47 pF at 0.3~3.3 V was fabricated. We got the appropriate device in driving voltage 3.3 V having hyper-abrupt junction that profile order (m factor) is about -3/2. The deviation of capacitance by hyper-abrupt junction with C0.3 V of initial capacitance is due to the deviation of thermal process, ion implantation and diffusion. The deviation of initial capacitance at 0.3 V can be reduced by control of thermal process tolerance using RTP on wafer.

Design of UHF CMOS Front-ends for Near-field Communications

  • Hamedi-Hagh, Sotoudeh;Tabesh, Maryam;Oh, Soo-Seok;Park, Noh-Joon;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.817-823
    • /
    • 2011
  • This paper introduces an efficient voltage multiplier circuit for improved voltage gain and power efficiency of radio frequency identification (RFID) tags. The multiplier is fully integratable and takes advantage of both passive and active circuits to reduce the required input power while yielding the desired DC voltage. A six-stage voltage multiplier and an ultralow power voltage regulator are designed in a 0.13 ${\mu}m$ complementary metal-oxide semiconductor process for 2.45 GHz RFID applications. The minimum required input power for a 1.2 V supply voltage in the case of a 50 ${\Omega}$ antenna is -20.45 dBm. The efficiency is 15.95% for a 1 $M{\Omega}$ load. The regulator consumes 129 nW DC power and maintains the reference voltage in a 1.1% range with $V_{dd}$ varying from 0.8 to 2 V. The power supply noise rejection of the regulator is 42 dB near a 2.45 GHz frequency and performs better than -32 dB from 100 Hz to 10 GHz frequencies.