• Title/Summary/Keyword: V$_2$O$_{}$ 5/

Search Result 3,759, Processing Time 0.035 seconds

Humidity Sensitive Properties of $V_2O_5$-added $TiO_2$ Ceramics ($V_2O_5$ 첨가에 따른 $TiO_2$ 세라믹스의 감습특성)

  • Hyun, You-Do
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.161-163
    • /
    • 2008
  • $TiO_2-V_2O_5$ sol was fabricated using sol-gel method and $TiO_2-V_2O_5$, thin films were fabricated using dip-coating method. $V_2O_5$ sol was added 0.01mole, 0.03mole, 0.05mole into $TiO_2$ sol. Capacitance of thin films decreased with increasing $V_2O_5$ additive and it increased largest at 0.01mole. Because adsorption time and desorption time of thin films was about 2 minutes 40 seconds and about 3 minutes 40 seconds respectively, adsorption time was faster about 1 minutes than desorption time.

  • PDF

Photoelectrochemical Converision with $SrTiO_3$ Ceramic Electrodes ($SrTiO_3$ 세라믹 전극에 의한 광전기 화학변환)

  • 윤기현;김태희
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.19-24
    • /
    • 1985
  • The phtoelectrochemical porperties of $Nb_2O_5$, $Sb_2O_3$ and $V_2O_5$ doped and pure $SrTiO_3$ ceramic electodes were investigated. Shapes of I-V and I-λ characteristics of the pure $SrTiO_3$ ceramic electrode are similar to those of SrTiO3 single crystal electorde ; the anodic current strats at -0.9V (vs. Ag/AgCI) in 1 N-NaOH aqueous solution and the photoresponse appears at a wavelength of about 390nm and the quantum efficiency is about 3.5% at wavelength of 390nm under 0.5V vs. Ag/AgCl. Photocurrents of $Nb_2O_5$, $Sb_2O_3$ and $V_2O_5$ doped electrodes and $V_2O_5$ doped ceramic electrode appears at wavelength of 390nm and 500nm respectively.

  • PDF

A Study on the Optical Properties of Lithium Injection in V$_2$O$_{5}$ Electrochromic Thin Films (리튬이 주입된 전기변색 V$_2$O$_{5}$ 박막의 광 특성에 관한 연구)

  • Ha, Seung-Ho;Cho, Bong-Hee;Kim, Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.802-807
    • /
    • 1995
  • The electrochromic properties of vacuum deposited V$_2$O$_{5}$ thin films as a function of crystallinity and film thickness have been systematically investigated. The as-deposited films have slightly yellow appearance. V$_2$O$_{5}$ films deposited at higher substrate temperature(>14$0^{\circ}C$) are found to be crystalline while those deposited at low substrate temperature are amorphous. The optical modulation on lithium ion injection indicates that V$_2$O$_{5}$ films exhibit anodic coloration in the 300~500 nm wavelength range and cathodic coloration in the 500~1100nm wavelength range independent of crystallinity and film thickness. The optical band gap energy of crystalline and amorphous Li$_{x}$ VV$_2$O$_{5}$ films shifts to higher energies by 0.17 eV and 0.75 eV, respectively, with increasing lithium ion injection up to x=0.6. The coloration efficiency of amorphous Li$_{x}$ V$_2$O$_{5}$ exhibits very little dependence on film thickness and lithium ion injection amounts in the near-infrared while it increases significantly with increasing film thickness and decreasing lithium ion injection amounts in the blue and near-UV due to the shift in absorption edge below around 500nm. However, the coloration efficiency of crystalline Li$_{x}$ V$_2$O$_{5}$is relatively independent of film thickness and lithium ion injection in the 300~1100 nm wavelength range.

  • PDF

Crystallization and Electrical properties of $CuO-P_2O_5-V_2O_5$ Glass for solid state Electrolyte (고체 전해질용 $CuO-P_2O_5-V_2O_5$ 유리의 결정화와 전기 전도도)

  • Son, Myung-Mo;Lee, Heon-Soo;Chun, Yon-Soo;Gu, Hal-Bon;Lee, Sang-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.934-937
    • /
    • 2003
  • Glasses in the system $CuO-P_2O_5-V_2O_5$ were prepared by a press-quenching method on the copper plate. The glass-ceramics from these glasses were obtained by post-heat treatment, and the crystallization behavior and DC conductivities were determined. The conductivities of the glasses were range from $10^{-6}s.Cm^{-1}$ at room temperature, but the conductivities of the glass-ceramics were $10^{-3}s.Cm^{-1}$ increased by $10^3$ order. The crystalline product in the glass-ceramics was $CuV_2O_6$. Heat-treatment conditions influenced the crystal growth of $CuV_2O_6$ and conductivity. The linear relationship between in (${\sigma}T$) and $T^{-1}$ suggested that the electrical conduction in the present glass-ceramics would be due to a small polaron hopping(SPH) mechanism.

  • PDF

Magnetic Properties of Chip Inductors Prepared with V2O5-doped Ferrite Pastes (V2O5 도핑한 페라이트 페이스트로 제조된 칩인덕터의 자기적 특성)

  • Je, Hae-June
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.109-114
    • /
    • 2003
  • The purpose of this study Is to investigate the effect of $V_2$O$_{5}$ addition on the microstructures and magnetic properties of 7.7${\times}$4.5${\times}$1.0 mm sized multi-layer chip inductors prepared by the screen printing method using 0∼0.5 wt% $V_2O_{5}$-doped NiCuZn ferrite pastes. With increasing the $V_2O_{5}$ content, the exaggerated grain growth of ferrite layers was developed due to the promotion of Ag diffusion and Cu segregation into the grain boundaries oi ferrites, which affected significantly the magnetic properties of the chip inductors. After sintering at $900^{\circ}C$, the inductance at 10 MHZ of the 0.5 wt% $V_2O_{5}$-doped chip inductor was 3.7 ${\mu}$H less than 4.2 ${\mu}$H of the 0.3 wt% $V_2O_{5}$-doped one, which was thought to be caused by the residual stress at the ferrite layers increased with the promotion of Ag diffusion and Cu segregation. The quality factor of the 0.5 wt% $V_2O_{5}$-doped chip inductor decreased with increasing the sintering temperature, which was considered to be caused by the electrical resistivity of the ferrite layer decreased with the promotion of Ag/cu segregation at the grain boundaries and the growth of the mean grain size of ferrite due to exaggerated grain growth of ferrite layers.

Synthesis of SnO2-TiO2-V2O5 System Yellow Pigment (SnO2-TiO2-V2O5계의 노랑안료 합성)

  • Joo, In-Don;Hwang, Dong-Ha;Lee, Hyun-Soo;Park, Joo-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.639-642
    • /
    • 2009
  • The research was performed to find out the optimum firing condition for the $SnO_2-TiO_2-V_2O_5$ system yellow pigment. The pigment based on $SnO_2-V_2O_5$ system showed very intense yellow color and it was used widely in ceramics industry. Synthesized pigment, with partial substitutions of $SnO_2\;by\;TiO_2$, was fired at $1300{^{\circ}C}$ soaking 1h and it showed bright yellow color. $SnO_2-TiO_2-V_2O_5$ system was very more intensive changes in yellow color by colorimetric value $b^*$ than $SnO_2-V_2O_5$ system. Synthesized yellow pigments were characterized by X-ray diffraction (XRD), FT-IR, and UV-vis spectroscopy. The best composition for yellow pigment was 93:7:0.5(mole%) for $SnO_2-V_2O_5-TiO_2$. The measurement of CIE $L^*a^*b^*$ of pigment was $L^*(78.82),\;a^*(-4.88)\;and\;b^*$(59.25).

Preparation and Electrical Conductivity of CuO-Bi2O3-V2O5 Glass for Solid State Batteries

  • Jeong, Dong-Jin;Park, Hee-Chan;Lee, Heun-Soo;Park, Chan-Young
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.183-188
    • /
    • 1999
  • The crystallization behavior and electrical conductivity of the $CuO-Bi_2O_3-V_2O_5$ glasses with various CuO content were investigated. The glass formation regin was 0~20 mol% Bi2O3, 5~55 mol% CuO, and 30~90 mol% $V_2O_5$ with Tg=$275^{\circ}C$~$290^{\circ}C$. Among glasses with various compositions, the 31CuO-$14Bi_2O_3-55V_2O_5$ (mol%) glass heat-treated at $358^{\circ}C$ for 8 h showed the highest conductivity of ~ at room temperature. The heat-treated glasses increased in electrical conductivity by the order of 104 compared to non heat-treated glass. The linear relationship between 1n($\sigma$T)and $T^{-1}$ indicated that electrical conduction in the 31CuO-$14Bi_2O_3-55V_2O_5$ (mol%) glass occurred by a small polaron hopping.

  • PDF

Development of environmentally friendly inorganic fluorescent pigments, A3V5O14 (A = K and Rb) and Cs2V4O11: Crystal structure, optical and color properties (친환경 무기 형광 안료 A3V5O14 (A = K and Rb) and Cs2V4O11 개발: 결정구조, 광학적 특성 및 착색 특성)

  • Jeong, Gyu Jin;Kim, Jin Ho;Lee, Younki;Hwang, Jonghee;Toda, Kenji;Bae, Byoungseo;Kim, Sun Woog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.47-54
    • /
    • 2020
  • To develop the bright-vivid red- and yellow-inorganic fluorescent pigments with high luminescence properties, A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments were synthesized by a water assisted solid state reaction (WASSR) method and a conventional solid state reaction method. Although impurity peaks corresponding to the AVO3 and AV3O8 (A = K, Rb, and Cs) were observed in all samples prepared, the trigonal structure A3V5O14 (A = K and Rb) and orthorhombic structure Cs2V4O11 were successfully obtained as a main phase. These inorganic pigments showed the broad absorption band (under 550 nm) originated from CT transitions of VO4 polyhedron, and the strong broad red- and green-emission bands due to 3T21A1 and 3T11A1 transitions of the [VO4]3- group. The A3V5O14 (A = K and Rb) and Cs2V4O11 pigments showed a bright-vivid red- and yellow-body color, where the a* values of the A3V5O14 (A = K and Rb) were +35.5 and +45.9, respectively, and b* value of Cs2V4O11 pigments was +50.3. The L* values of the A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments were over +45. These results indicate that the A3V5O14 (A = K and Rb) and Cs2V4O11 inorganic pigments could be an attractive candidate as a bright-vivid red- and yellow inorganic pigments.

Low-Temperature Selective Catalytic Reduction of No with NH3 over Mn-V2O5/TiO2 (Mn-V2O5/TiO2 촉매의 NH3에 의한 NO의 저온 선택적 촉매환원)

  • Choi, Sang-Ki;Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.333-340
    • /
    • 2006
  • A (5 wt.%)Mn-(1 wt.%)$V_{2}O_{5}/TiO_{2}$ catalyst were prepared by co-precipitation method and used for low-temperature selective catalytic reduction (SCR) of $NO_x$ with ammonia in the presence of oxygen. The properties of the catalysts were studied by X-ray diffraction (XRD), temperature programmed reduction (TPR) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS). The experimental results showed that (5 wt.%)Mn-(1 wt.%)$V_{2}O_{5}/TiO_{2}$ catalyst yielded 81% NO conversion at temperature as low as $150^{\circ}C$ and a space velocity of $2,400\;h^{-1}$. Crystalline phase of $Mn_{2}O_3$ was present at ${\ge}\;15%$ Mn on $V_{2}O_{5}/TiO_{2}$. XRD confirmed the presence of manganese oxide ($Mn_{2}O_{3}$) at $2{\theta}=32.978^{\circ}(222)$. The XRD patterns presented of (5 wt.%)Mn-(1 wt.%)$V_{2}O_{5}/TiO_{2}$ did not show intense or sharp peaks for manganese oxides and vanadia oxides. The TPR profiles of (5 wt.%)Mn-(1 wt.%)$V_{2}O_{5}/TiO_{2}$ catalyst showed main reduction peat of a maximum at $595^{\circ}C$.