• Title/Summary/Keyword: Uwa Sea

Search Result 9, Processing Time 0.022 seconds

Underwater acoustic communication system using diversity based on ray modeled underwater acoustic channel in Yellow Sea (다이버시티 기법을 이용한 서해에서의 음선 모델기반 수중음향통신 시스템)

  • Kang, Jiwoong;Kim, Hyeonsu;Ahn, Jongmin;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • This paper proposes an adequate UWA (Underwater Acoustic) communication system of underwater communication network in the Yellow Sea. UWA channel is obtained from Bellhop ray tracing method with Yellow Sea environments. Based on this channel, communication parameters for CDMA (Code Division Multiple Access) and SC-FDM (Single Carrier-Frequency Division Multiplexing) using diversity techniques are calculated. In order to prove the proposed methods, BER (Bit Error Rate) and data rate are obtained using computer simulations and the adequate communication system for long rms delay spread and low Eb/No environments is proposed from the simulation.

Bit Split Method for Efficient Channel Estimation in UWA Channel (수중 다중경로 채널에서 효과적인 채널추정을 위한 비트 분리 방법)

  • Kim, Min-Hyuk;Park, Tae-Doo;Kim, Chul-Seung;Jung, Ji-Won;Yong, Chun-Seung;Sohn, Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2207-2214
    • /
    • 2010
  • Underwater acoustic(UWA) communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of UWA channel causes signal distortion and error floor. In this paper, we proposed split input bits of channel decoder using method of maximum value, average value, LLR value for optimal estimation. Channel coding method is LDPC(N size=16000) standard in DVB-S2. As shown in simulation results, the performance of LLR value method is better than other methods.

Performance Analysis of LDPC code with Channel Estimation in Underwater Communication (수중통신 채널에서 채널 추정 오차에 따른 LDPC 부호 성능분석)

  • Kim, Nam-Soo;Jung, Ji-Won;Kim, Ki-Man;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2295-2303
    • /
    • 2009
  • Underwater acoustic(UWA) communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of UWA channel causes signal distortion and error floor. In this paper, we proposed the compensation method of multipath effect using the impulse response of the UWA channel and then analysis the performance of channel coding such as LDPC code, concatenate code. Also we analysed the time-delay errors and estimated amplitude errors of estimated channel information and its affection on the performance. As shown in simulation results, the performance of proposed compensation method is better than the performance of conventional method.

Design Philosophy of MIMO OFDM system for Underwater Communication (수중 통신 환경을 위한 MIMO-OFDM 시스템 설계)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Byun, Sung-Hun;Kim, Sea-Moon;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2011
  • In this paper, we first analyze the differences of underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) systems and conventional terrestrial OFDM system, and give a simple introduction of the backgrounds. By considering the real UWA channel environments, the measured channel data is used to generate the UWA channel model and calculate the relative parameters for underwater OFDM systems. Practical least square (LS) based channel estimation with linear interpolation are adopted to obtain the channel state information (CSI) at receiver side. As multi-input multi-output (MIMO) processing techniques, Alamouti code is implemented and evaluated to perform for space time block coding (STBC) and space frequency block coding (SFBC) for UWA OFDM systems with the MIMO configuration of $2{\times}1$, at the same time, $1{\times}2$ maximum ratio combining (MRC) is performed for the purpose of comparison. The simulation results show that, with perfect channel estimation, SFBC failed to work duo to the serious frequency selectivity of UWA channel environments. When the practical channel estimation is applied, in the case of STBC, the proposed 4-column pilot pattern gives better performance about 7dB than SISO system.

Performance Analysis of UWA Communication System by Diversity in UWA Channel (수중 음향 다중 경로 채널에서 수중 음향 통신 시스템 성능 분석)

  • Lee, Hojun;Kang, Jiwoong;Ahn, Jongmin;Chung, Jaehak
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.4
    • /
    • pp.191-198
    • /
    • 2017
  • In this paper, we compare the transmission performance of Code Division Multiple Access (CDMA) and Orthogonal Frequency Division Multiplexing (OFDM) under long duration multipath channel environments. This paper generates underwater channels through Bellhop based on the underwater environmental data of the west sea. BER performance of CDMA and OFDM are analyzed through various underwater channels based on the channels. Computer simulations result show that CDMA has better performance than OFDM when multipath delay time of underwater channel is shorter than spreading factor (SF). However, OFDM has better BER performance than CDMA as multi-path delay time increases.

Performance of MIMO-OFDM Systems for Underwater Communications (수중 통신 환경에서의 MIMO-OFDM 시스템 성능 분석)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Byun, Sung-Hoon;Kim, Sea-Moon;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.597-599
    • /
    • 2010
  • In this paper, by considering the real UWA channel environments, the measured channel data is used to generate the UWA channel model and calculate the relative parameters for underwater OFDM systems. Practical least square (LS) based channel estimation with linear interpolation are adopted to obtain the channel state information (CSI) at receiver side. As multi-input multi-output (MIMO) processing techniques, Alamouti code is implemented and evaluated to perform for space time block coding (STBC) and space frequency block coding (SFBC) for UWA OFDM systems with the MIMO configuration of $2{\times}1$, at the same time, $1{\times}2$ maximum ratio combining (MRC) is performed for the purpose of comparison. The simulation results show that, with perfect channel estimation, SFBC failed to work duo to the serious frequency selectivity of UWA channel environments. When the practical channel estimation is applied, in the case of STBC, the proposed 4-column pilot pattern gives better performance about 7dB than SISO system.

  • PDF

Feeding behavior of the copepod Temora turbinata: clearance rate and prey preference on the diatom and microbial food web components in coastal area

  • Chang, Kwang-Hyeon;Doi, Hideyuki;Nishibe, Yuichiro;Nam, Gui-Sook;Nakano, Shin-Ichi
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.225-229
    • /
    • 2014
  • Feeding behavior of Temora turbinata was investigated through laboratory experiments with special emphasis on its food preference and consequent clearance rate on diatom and microbial components given as common natural food assemblage of coastal area (Uchiumi, Uwa Sea, Japan). Among available prey items, T. turbinata showed the highest clearance rate for Thalassiosira spp. ($0.23{\pm}0.08L\;Temora^{-1}day^{-1}$) followed by Chaetoceros spp. ($0.11{\pm}0.03L\;Temora^{-1}day^{-1}$), but clearance rates for other diatom, Nitzschia spp. was lower (0.03 to $0.07L\;Temora^{-1}day^{-1}$). Bacterial abundances showed no response against 24-h feeding of T. turbinata. Feeding of T. turbinata on heterotrophic nanoflagellates (HNF) was apparent when clearance rates of T. turbinata on diatoms were relatively low, but T. turbinata did not consume HNF as well as ciliates with Thalassiosira spp. of which clearance rate was highest. The results suggest that HNF and ciliates are possible supplementary prey item for T. turbinata, but their contribution as food sources can be limited by the presence of other prey items such as preferable diatom species.

Performance Evaluation of Underwater Acoustic Communication in Frequency Selective Shallow Water (주파수 선택적인 천해해역에서 수중음향통신 성능해석)

  • Park, Kyu-Chil;Park, Jihyun;Lee, Seung Wook;Jung, Jin Woo;Shin, Jungchae;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.95-103
    • /
    • 2013
  • An underwater acoustic (UWA) communication in shallow water is strongly affected by the water surface and the seabed acoustical properties. Every reflected signal to receiver experiences a time-variant scattering in sea surface roughness and a grazing-angle-dependent reflection loss in bottom. Consequently, the performance of UWA communication systems is degraded, and high-speed digital communication is disrupted. If there is a dominant signal path such as a direct path, the received signal is modeled statistically as Rice fading but if not, it is modeled as Rayleigh fading. However, it has been known to be very difficult to reproduce the statistical estimation by real experimental evaluation in the sea. To give an insight for this scattering and grazing-angle-dependent bottom reflection loss effect in UWA communication, authors conduct experiments to quantify these effects. The image is transmitted using binary frequency shift keying (BFSK) modulation. The quality of the received image is shown to be affected by water surface scattering and grazing-angle-dependent bottom reflection loss. The analysis is based on the transmitter to receiver range and the receiver depth dependent image quality and bit error rate (BER). The results show that the received image quality is highly dependent on the transmitter-receiver range and receiver depth which characterizes the channel coherence bandwidth.

Multipath Fading Channel Characterization and Performances of Forward Error Correction Codes in Very Shallow Water (극 천해 다중경로 페이딩 채널 특성과 전방오류 정정 코드의 성능)

  • Bae, Minja;Xue, Dandan;Park, Jihyun;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2247-2255
    • /
    • 2015
  • In very shallow water acoustic communication channel, underwater acoustic (UWA) communication signal is observed as frequency selective fading signal due to time-varying multipath. This induces a time and frequency dependent inter-symbol-interference (ISI) and degrades the UWA system performance. There is no study about how the performances of the error correction codes are related to a multipath fading statistics in very shallow water. In this study, the characteristics of very shallow water multipath fading channel is analyzed and the performances of two different forward error correction (FEC) codes are compared. The convolution code (CC) and Reed-Solomon (RS) code are adopted. Sea experimental results show that RS code is better choice than CC in frequency selective channel with fading.