• Title/Summary/Keyword: Utilization of aluminum scrap

Search Result 6, Processing Time 0.018 seconds

Corrosion Characteristics of Aluminum Die Casting Alloys with Different Scrap Charge Rate (스크랩 장입 비율에 따른 다이캐스팅용 알루미늄 합금의 부식 특성)

  • Kim, Jun-Ho;Lee, Seung-Hyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.322-329
    • /
    • 2020
  • The utilization of aluminum scrap is a subject of great importance in terms of reducing energy consumption and environmental protection. However, aluminum scrap contains impurities, which can degrade the properties of aluminum alloy, especially corrosion resistance. This study examines the effect of scrap charge rate of aluminum alloys about microstructures and corrosion characteristics. According to the metallographic examinations, Mg2Si tended to become coarser and its uniformity was decreased by increasing aluminum scrap charge rate. The immersion test exhibited corrosion progressed through the eutectic areas due to micro-galvanic interactions. Electrochemical measurements revealed that excess aluminum scrap could reduce the intergranular corrosion resistance of aluminum alloys. Results showed that the scrap charge rate is important factor in the design of corrosion resistance of aluminum die casting alloys.

Effect of Scrap Addition Ratio on Tensile and Solidification Cracking Properties of AC4A Aluminum Casting Alloy (AC4A 알루미늄 합금의 인장 및 응고균열 특성에 미치는 스크랩 첨가 비율의 영향)

  • Oh, Seung-Hwan;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.85-96
    • /
    • 2020
  • The effect of an aluminum scrap addition ratio on the tensile and solidification cracking properties of the AC4A aluminum alloy in the as-cast state and heat-treated state were investigated in this study. Generally, the expected problem of using scrap in aluminum casting is an increase of hydrogen and Fe element inside the aluminum melt. Another issue is an oxide film which has a weak interface with the molten aluminum and acts as potent nucleation sites for internal porosity and crack initiation. Solidification cracking is one of the critical defects that must be resolved to produce high quality castings. A conventional evaluation method for solidification cracking is a relative and qualitative analysis method which does not provide quantitative data on the thermal stress in the solidification process. Therefore, a newly designed solidification cracking test apparatus was used in this study, and the device can provide quantitative data. As a result, after conducting experiments with different scrap addition ratios (0%, 20%, 35%, 50%), the tensile strengths and elongations in the as-cast state were 214, 187.7, 182.1 and 170.4MPa and 4.6%, 3.4%, 3.1% and 2.3%, respectively. In the case of the T6 heat-treated state, the tensile strengths and elongations were 314.9, 294.6, 293.1 and 271.1MPa and 5.4%, 4.6%, 3.8% and 3.1%, respectively. The strength of the solidification cracking was 3.1, 2.4, 2.2and 1.6MPa as the scrap addition ratio increases.

Effect of Grain Refiner and Eutectic Si Modifier on Casting Properties of Al-Si-Cu Alloy System Containing Recycled Scrap (재활용 스크랩 함유 Al-Si-Cu계 합금의 주조특성에 미치는 결정립 미세화제와 공정 Si 개량화제의 영향)

  • Sung, Dong-Hyun;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.121-131
    • /
    • 2018
  • The effect of additives on the castability of the AC2BS aluminum alloy, which contains 35% recycled scrap, was investigated. For the wide utilization of the recycled scrap AC2BS aluminum alloy, the research results were compared to those with the AC2B virgin alloy, which is typical Al-Si-Cu alloy system. It was confirmed that the addition of Al-5%Ti-1%B increased the ${\alpha}$-Al nucleation temperature during solidification and decreased the grain size through cooling curve and microstructural observations of the recycled alloy. It was also found that an addition of Al-10%Sr decreased the eutectic Si growth temperature during the solidification process and modified the shape of the eutectic Si of the recycled alloy. The characteristics of fluidity, shrinkage and solidification crack strength were evaluated. For the AC2BS aluminum alloy containing 35% recycled scrap, both ${\alpha}$-Al grain refinement due to Ti-B and eutectic Si modifications due to Sr contributed to the improvement of the fluidity. The macro- shrinkage ratio increased with additions of both Al-10%Sr and Al-5%Ti-1%B and the micro-shrinkage ratio increased with the addition of Al-10%Sr but decreased with the addition of Al-5%Ti-1%B. The casting characteristics of TiB and Sr-treated AC2BS aluminum alloy containing 35% recycled scrap are similar to those of AC2B virgin alloy. The improvement of the solidification crack strength of the AC2BS aluminum alloy was possible by the reduction of the grain boundary the stress concentration through the enhancement by both ${\bullet}{\cdot}$-Al refinement and eutectic Si modification. More extensive use of the AC2BS aluminum alloy containing 35% recycled scrap can be expected in the future.

Effect of Sr and (Ti-B) Additives on Tensile Properties of AC4A Recycled Aluminum Casting Alloys (재활용 AC4A 알루미늄 합금의 인장특성에 미치는 (Ti-B), Sr 첨가제의 영향)

  • Oh, Seung-Hwan;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.87-94
    • /
    • 2018
  • The effects of Sr and (Ti-B) additives on the tensile properties of AC4A recycled (35% scrap content) aluminum alloys were investigated. An acicular morphology of the eutectic Si phase of as-cast specimens was converted to a fibrous morphology upon the addition of Sr. Moreover, morphology of the Sr modified eutectic Si phase became finer due to a T6 heat treatment. The grain size of the ${\alpha}$-solid solution was decreased by the addition of (Ti-B) additives. Depending on the treatment conditions of the as-cast specimens, i.e., no addition, a Sr addition and a (Ti-B)+Sr addition, the tensile strength levels of the as-cast specimens were 182, 192, and 204MPa, respectively. The corresponding strengths of T6 heat-treated specimens were 293, 308, and 318MPa. Elongations of the as-cast specimens were 2.2, 3.1, and 5.6%, and the corresponding elongations of the T6 heat-treated specimens were 4.6, 6.1, and 7.6%. The percentage of the reduced section area in the tensile specimens was also increased by the Sr and (Ti-B) additives. Sr and (Ti-B) additives changed the microstructure and the distribution of defects in the castings, resulting in an improvement of the tensile properties of AC4A aluminum alloys. According to our test results, recycled (35% scrap content) AC4A aluminum alloy met all of the KS requirements of the tensile strength and elongation values of AC4A aluminum alloy except for the elongation value of the one specimen condition, in this case the as-cast no-addition condition.

Development of Metal Recovery Process for Municipal Incineration Bottom Ash (MIBA)

  • Kuroki, Ryota;Ohya, Hitoshi;Ishida, Kazumasa;Yamazaki, Kenichi
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.21-25
    • /
    • 2019
  • The utilization of incineration ash from municipal waste must be promoted to solve the social problem on the shortage of final disposal site. In this research, metals should be recovered to avoid the damage of the crushing machine during the utilization of incineration ash in cement industry. In fact, incineration bottom ash from municipal waste contains iron in 3-5%. Nonferrous metal and stainless steel in 1% is also included. The research and development on the physical recovery process was performed not only to remove the metals but also to recover high grade products. Metals were separated from incineration ash in Maruya Co. Ltd.. In fact, iron scrap recovered by magnetic separation can be selled. After that, mixed metal was separated from incineration ash using screen. In this research, mixed metal tried to divided copper, aluminum, brass and stainless steel using drum type magnetic separation, eddy current separation and high magnetic separation. As a result, recovered iron had an 80% for the grade. Aluminum was recovered by eddy current separation without copper and brass.

Electrogenerated Chlorine Leaching of Electronic Scrap (전해생성된 염소를 이용한 폐전자 기판의 침출 연구)

  • Kim, Min-Seuk;Lee, Jae-Chun;Jeong, Jin-Ki
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.05a
    • /
    • pp.23-27
    • /
    • 2005
  • Electrogenerated chlorine leaching of used printed circuit board was Investigated in hydrochloric acid solution. The used printed circuit board contained about 45% of metal component, in which copper was about 84%. The leaching rate was greatly effected by current density and agitation. Utilization of electrogenerated chlorine was enhanced by increasing agitation and lowering current density. Leaching of copper was suppressed, while the minor metal elements, such as aluminum, lead, and tin, dominated the leaching at the initial stage.

  • PDF