• Title/Summary/Keyword: Utilization of airflow

Search Result 6, Processing Time 0.02 seconds

Fuel Cell Modeling and Load Controlling by the Variable Utilization of Airflow (연료전지 모델링 및 공기이용률 제어에 관한 연구)

  • Song, S.H.;Lee, W.Y.;Kim, C.H.;Park, Y.P.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.48-52
    • /
    • 2003
  • A mathematical dynamic model of fuel cell was formulated in order to design the control system which will meet the control object. The control objective is set to regulate the airflow in the load change by utilization of airflow and the pressure difference between anode and cathode is maintained below a limit range. Simulation result of 10kW polymer electrolyte membrane fuel cell (PEMFC) clearly demonstrates that response time need to be less. than 1 seconds for the control requirements. Besides, pressure difference was allowed in pressure range less than 0.01 atm.

Numerical Analysis of Flow Uniformity in Selective Catalytic Reduction (SCR) Process Using Computational Fluid Dynamics (CFD)

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.295-306
    • /
    • 2022
  • The NOx removal performance of the SCR process depends on various factors such as catalytic factors (catalyst composition, shape, space velocity, etc.), temperature and flow rate distribution of the exhaust gas. Among them, the uniformity of the flow flowing into the catalyst bed plays the most important role. In this study, the flow characteristics in the SCR reactor in the design stage were simulated using a three-dimensional numerical analysis technique to confirm the uniformity of the airflow. Due to the limitation of the installation space, the shape of the inlet duct was compared with the two types of inlet duct shape because there were many curved sections of the inlet duct and the duct size margin was not large. The effect of inlet duct shape, guide vane or mixer installation, and venturi shape change on SCR reactor internal flow, airflow uniformity, and space utilization rate of ammonia concentration were studied. It was found that the uniformity of the airflow reaching the catalyst layer was greatly improved when an inlet duct with a shape that could suppress drift was applied and guide vanes were installed in the curved part of the inlet duct to properly distribute the process gas. In addition, the space utilization rate was greatly improved when the duct at the rear of the nozzle was applied as a venturi type rather than a mixer for uniform distribution of ammonia gas.

Analysis of Minimum Airflow Differences between Supply and Exhaust Air according to Airtightness of Rapidly Converted Temporary Negative Pressure Isolation Rooms (긴급전환형 임시음압격리병실의 기밀도에 따른 최소 급배기 유량차 평가)

  • Shin, Hee Won;Kim, Dong Wook;Kim, Ji Min;Jung, Hyo Beom;Kang, Dong Hwa
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.29 no.4
    • /
    • pp.69-77
    • /
    • 2023
  • Purpose: During the COVID-19 pandemic, there have been many cases of converting regular hospital wards into temporary negative pressure isolation wards. The purpose of this study is to evaluate the minimum airflow differences that satisfies the pressure difference criteria(-2.5 Pa) according to airtightness of switching type wards, in preparation for utilization of aging regular wards as negative pressure isolation wards. Methods: Visual inspection and field measurements were conducted using blower door to evaluate airtightness of 5 hospital wards. CONTAM simulation was used to assess the airflow differences when pressure difference between the corridor and wards met the criteria at various levels of airtightness. Results: The ACH50 of evaluated wards ranged from 19.3 to 50.1 h-1 with an average of 37.0 h-1, indicating more than four times leakier than other building types. The minimum airflow differences increased as the airtightness of the wards decreased and the size of the wards increased. Implications: When operating rapidly converted negative pressure isolation wards, understanding airtightness is crucial for determining the minimum airflow differences to maintain the pressure differences. The analysis of this study suggests that improving the airtightness of aging rooms is essential and the minimum airflow differences should be suggested considering both the airtightness and size of rooms.

Experimental study on air-water countercurrent flow limitation in a vertical tube based on measurement of film thickness behavior

  • Wan, Jie;Sun, Wan;Deng, Jian;Pan, Liang-ming;Ding, Shu-hua
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1821-1833
    • /
    • 2021
  • The gas-liquid counter-current flow limitation (CCFL) is closely related to efficient and safety operation of many equipment in industrial cycle. Air-water countercurrent flow experiments were performed in a tube with diameter of 25 mm to understand the triggering mechanism of CCFL. A parallel electrode probe was utilized to measure film thickness whereby the time domain and frequency domain characteristics of liquid film was obtained. The amplitude of the interface wave is small at low liquid flow rate while it becomes large at high liquid flow rate after being disturbed by the airflow. The spectral characteristic curve shows a peak-shaped distribution. The crest exists between 0 and 10 Hz and the amplitude decreases with the frequency increase. The analysis of visual observation and characteristic of film thickness indicate that two flooding mechanisms were identified at low and high liquid flow rate, respectively. At low liquid flow rate, the interfacial waves upward propagation is responsible for the formation of CCFL onset. While flooding at high liquid flow rate takes place as a direct consequence of the liquid bridging in tube due to the turbulent flow pattern. Moreover, it is believed that there is a transition region between the low and high liquid flow rate.

A Study on a space utilization plan for screening clinic in public health center by means of the prevention of respiratory infectious disease - Focused on a negative pressured tuberculosis exam room (호흡기 감염병 예방을 위한 보건소 상시 선별진료소 활용방안 연구 - 음압 결핵 검진실을 중심으로)

  • Yoon, Hyung Jin;Han, Su Ha
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.27 no.4
    • /
    • pp.51-60
    • /
    • 2021
  • Purpose: Tuberculosis(TB) care unit in public health center should be carefully considered to be re-designed as an infection safety environment for both patient and healthcare workers. So, for the enhancement, this study analyses the facility requirements for co-using the screening clinic as a TB and other respiratory disease care unit. Methods: Not only screening clinic facility guidelines from "A Study for Standard Triage Design and Construction Document" but also the guidelines of TB care and related medical facility are reviewed; KDCA, CDC, ECDC and WHO as a TB care, and FGI and NHS for facility. The facility requirements are summarized space, approach, and mechanical requirement in order. By comparing the summary and screening clinic facility guidelines, supplementations are proposed for TB care unit setting. Results: The result of this study shows that both the space program and mechanical requirement of the screening clinic and that of TB care unit are almost identical and could be share, which include direct airflow or negative air pressure in an exam room. To increase functional and economical efficiency, however, it is necessary to consider a multi-functional negative pressured room, So care process may be re-designed based on a room type; face-to-face room or glass wall inbetween. Implications: The facility guidelines for TB care unit of a public health center should be developed to build a safe environment for infection control by reflecting its medical plan and budget.