• Title/Summary/Keyword: Utility Theory

Search Result 311, Processing Time 0.025 seconds

Automated Mold Design to Optimize Multi-Quality Characteristics in Injection Molded Parts Based on the Utility Theory and Modified Complex Method (효용이론과 수정콤플렉스법에 기초한 사출 성형품의 다특성 최적화를 위한 자동 금형 설계)

  • Park, Byung-H
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.210-221
    • /
    • 2000
  • Plastic mold designers and frequently faced with optimizing multi-quality issues in injection molded parts. These issues are usually in conflict with each other and thus tradeoff needs to be made to reach a final compromised solution. in this study an automated injection molding design methodology has been developed to optimize multi-quality characteristics of injection molded parts. The features of the proposed methodology are as follows : first utility theory is applied to transform the original multi-objective problem into single-objective problem. Second is an implementation of a direct search-based injection molding optimization procedure with automated consideration of robustness against process variation. The modified complex method is used as a general optimization tool in this study. The developed methodology was applied to an actual mold design and the results showed that the methodology was useful through the CAE simulation using a commercial injection molding software package. Applied to production this study will be of immense value to companies in reducing the product development time and enhancing the product quality.

  • PDF

Using the Contingent Valuation Method Based on Multi-attribute Utility Theory to Measure the Environmental Value of the Nakdong-river Estuary (다속성 효용이론에 근거한 조건부 가치측정법을 이용한 낙동강 하구의 환경가치 추정)

  • Yoo, Seung-Hoon
    • Ocean and Polar Research
    • /
    • v.29 no.1
    • /
    • pp.69-80
    • /
    • 2007
  • This paper attempts to measure the environmental value of the Nakdong-river estuary, which is ecologically important but confronted with the threat of development. Especially, in order to elicit the environmental values of its four attributes, contingent valuation method(CVM) based on multi-attribute utility theory is applied and the CVM survey was rigorously designed to comply with the guidelines for best-practiced CVM studies. We surveyed a randomly selected sample of 400 and 350 households in Busan and six large cities(Seoul, Incheon, Daegu, Daejeon, Gwangju, and Ulsan), respectively and asked respondents questions in person-to-person interviews about how they would willing to pay for the estuary conservation and management program. Respondents overall accepted the contingent market and were willing to contribute a significant amount(2,457 won in Busan and 3,560 won in six large cities), on average, per household per year, which implies that there exists a large difference between the two. The aggregate values of the Nakdong-river estuary in Busan and six large cities amount to 2.92 and 22.32 billion won, respectively, per year. In addition, expanding the values to Korea produces 51.34 billion won per year. The quantitative values can be utilized in planning and decision-making about development versus conservation of the estuary.

Introducing a New Urban Utility Index Concept that Combines Urban Growth and Disasters

  • Koh, Munsung
    • Asian Journal of Innovation and Policy
    • /
    • v.10 no.2
    • /
    • pp.236-248
    • /
    • 2021
  • The objective of this study is to introduce the urban utility concept that combines urban growth and urban disasters in the aspect of a conceptual theory. While many studies focused on the dollar amount damaged from a disaster, it requires adding not just building damages or human body losses but also the quality of life satisfaction. An issue in measuring the quality of life satisfaction needs to introduce a proper mode quantifying it. This study introduces the urban utility change in measuring the negative impacts of a disaster on urban life, which has been rarely investigated. To identify urban utility, urban flooding that is a cross-sectoral agenda and important to both developed and developing countries was adopted to respond to its increased frequency and damages, encouraging governments to focus on flood control policies. By combining a literature review on urban utility and urban growth, this study defined the urban utility concept as a net benefit of a resident with earnings subtracting housing and commuting costs. The theoretical study also explained that urban utility and its components dynamically change as per urban growth and disasters that even reversely affect urban growth. Because the urban utility can be one of the useful indices to appreciate the relationship between a disaster and urban growth, it is highly expected to apply for similar disaster impacts on urban areas, including COVID-19 and various global warming issues.

Robust Design Method for Complex Stochastic Inventory Model

  • Hwang, In-Keuk;Park, Dong-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1999.04a
    • /
    • pp.426-426
    • /
    • 1999
  • ;There are many sources of uncertainty in a typical production and inventory system. There is uncertainty as to how many items customers will demand during the next day, week, month, or year. There is uncertainty about delivery times of the product. Uncertainty exacts a toll from management in a variety of ways. A spurt in a demand or a delay in production may lead to stockouts, with the potential for lost revenue and customer dissatisfaction. Firms typically hold inventory to provide protection against uncertainty. A cushion of inventory on hand allows management to face unexpected demands or delays in delivery with a reduced chance of incurring a stockout. The proposed strategies are used for the design of a probabilistic inventory system. In the traditional approach to the design of an inventory system, the goal is to find the best setting of various inventory control policy parameters such as the re-order level, review period, order quantity, etc. which would minimize the total inventory cost. The goals of the analysis need to be defined, so that robustness becomes an important design criterion. Moreover, one has to conceptualize and identify appropriate noise variables. There are two main goals for the inventory policy design. One is to minimize the average inventory cost and the stockouts. The other is to the variability for the average inventory cost and the stockouts The total average inventory cost is the sum of three components: the ordering cost, the holding cost, and the shortage costs. The shortage costs include the cost of the lost sales, cost of loss of goodwill, cost of customer dissatisfaction, etc. The noise factors for this design problem are identified to be: the mean demand rate and the mean lead time. Both the demand and the lead time are assumed to be normal random variables. Thus robustness for this inventory system is interpreted as insensitivity of the average inventory cost and the stockout to uncontrollable fluctuations in the mean demand rate and mean lead time. To make this inventory system for robustness, the concept of utility theory will be used. Utility theory is an analytical method for making a decision concerning an action to take, given a set of multiple criteria upon which the decision is to be based. Utility theory is appropriate for design having different scale such as demand rate and lead time since utility theory represents different scale across decision making attributes with zero to one ranks, higher preference modeled with a higher rank. Using utility theory, three design strategies, such as distance strategy, response strategy, and priority-based strategy. for the robust inventory system will be developed.loped.

  • PDF

A Utility-Based and QoS-Aware Power Control Scheme for Wireless Body Area Networks

  • Li, Yanjun;Pan, Jian;Tian, Xianzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4188-4206
    • /
    • 2016
  • Power control is widely used to reduce co-channel interference in wireless networks and guarantee the signal-to-interference plus noise ratio (SINR) of ongoing connections. This technique is also effective for wireless body area networks (WBANs). Although achieving satisfactory SINR is important for WBAN users, they may not be willing to achieve it at arbitrarily high power levels since power is a scarce resource in WBANs. Besides, for WBANs with different purposes, the QoS requirements and concern about the power consumption may be different. This motivates us to formulate the power control problem using the concepts from microeconomics and game theory. In this paper, the QoS objective is viewed as a utility function, which represents the degree of user satisfaction, while the power consumption is viewed as a cost function. The power control problem consequently becomes a non-cooperative multiplayer game, in which each player tries to maximize its net utility, i.e., the utility minus the cost. Within this framework, we investigate the Nash equilibrium existence and uniqueness in the game and derive the best response solution to reach the Nash equilibrium. To obtain the optimal transmission power in a distributed way, we further propose a utility-based and QoS-aware power control algorithm (UQoS-PCA). Tunable cost coefficient in UQoS-PCA enables this scheme to be flexible to satisfy diverse service requirements. Simulation results show the convergence and effectiveness of the proposed scheme as well as improvements over existing algorithm.

Decision Making Methodology on Ventilation System for Road Tunnels Based on Multi-Attribute Utility Theory (다속성 효용이론을 활용한 터널환기방식 선정)

  • Lee, Hye-Jin;Kang, Sang-Hyeok;Park, Won-Young;Seo, Jong-Won
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.3
    • /
    • pp.106-115
    • /
    • 2007
  • The size and length of road tunnels have been gradually expanded as industry developed. Consequently, the risk has been increased. The decision making process for ventilation system for road tunnels involves a large amount of information on economic feasibility, construction methods, and safety etc. In situation where systematically structured decision making process is unavailable, almost decisions about ventilation systems are made based on engineers' private knowledge and experiences. Procedure and criteria to choose the best optimized ventilation system among many alternatives are proposed, breaking away from the economic dependency-oriented decision making. This paper presents a Multi-Attribute Utility Theory and AHP based function with which planners can calculate overall utility of each alternative. It is anticipated that the effective use of the proposed methodology for decision making on ventilation systems ould be able to reduce the likelihood of the occurrence of potential safety risks as well as increase the overall ventilation performance.

A Production-Based Approach to Travel Choice Modeling (생산기반 가정아래서의 통행선택행위분석)

  • Mun, Dong-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.209-231
    • /
    • 2007
  • This paper suggested an approach to characterize travel choice behaviors using the implicit price instead of the indirect utility. The choice criterion to compare the implicit prices of available trip options was developed from the utility maximization problem of a trip maker which is supposed to choose the best option from the available ones differentiated by only by the quantitative attributes such as travel cost and time but also by qualitative attributes such as comfort and safety. The utility maximization problem is constructed under household production theory, and is incorporated with a special kind of joint homogeneous production functions. The implicit price of a certain trip option is the sum of the monetary price and the multiple of travel time and the value-of-travel-time, and the value-of-travel-time refers to the portion of wage, which can be assignable to the trip-making activity. This choice criterion is statistically identifiable, and behaviorally plausible. Moreover, this criterion has the expression simpler than the indirect utility, and therefore could be an effective target of the statistical estimation for travel choice behaviors.

Contract Theory Based Cooperative Spectrum Sharing with Joint Power and Bandwidth Optimization

  • Lu, Weidang;He, Chenxin;Lin, Yuanrong;Peng, Hong;Liu, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5803-5819
    • /
    • 2017
  • In this paper, we proposed a contract theory based cooperative spectrum sharing scheme with joint power and bandwidth optimization under asymmetric information, where the primary user (PU) does not know the secondary users' (SUs) private information. To improve performance, PU needs to provide incentives to stimulate nearby SUs to help forward its signal. By using contract theory, PU and SUs' negotiations are modeled as a labor market. PU and SUs act as the employer and employees, respectively. Specifically, SUs provide labor (i.e. the relay power, which can be used for forwarding PU's signal) in exchange for the reward (i.e. the spectrum access bandwidth which can be used for transmitting their own signals). PU needs to overcome a challenge how to balance the relationship between contributions and incentives for the SUs. We study the optimal contract design which consists of relay power and spectrum access bandwidth allocation. We show that the most efficient SUs will be hired by the PU to attend the cooperative communication. PU can achieve the same maximum utility as in the symmetric information scenario. Simulation results confirm that the utility of PU is significantly enhanced with our proposed cooperative spectrum sharing scheme.

What Drives Residents Low Carbon Transportation Commuting? Evidence from China

  • Li, Liang;Tan, Meixuen;Sun, Huaping;Sanitnuan, Nuttida
    • Asia Pacific Journal of Business Review
    • /
    • v.6 no.1
    • /
    • pp.21-48
    • /
    • 2021
  • Promoting low carbon transportation adoption is important for energy saving. Some prior studies have discussed on environmental values affect low carbon transportation commuting is inconclusive. This study has constructed the environmental values, utility value, and social influence-based low-carbon transportation adoption model through the theory of the technology acceptance model and VBN model and the IS success model. Through the SEM model and stepwise regression analysis, we have found that environmental values positively affect utility value, and utility value also positively affects the behavior adoption of low carbon transportation. The utility value as mediating effect in the relationship between environmental values and low carbon transportation commuting behavior. Besides, we also have found that social influence positively impacts the behavior adoption of low carbon transportation. It better enhances the level of household residents' environmental values and utility values, and social influence for promoting the adoption of low carbon transportation. This present research provides theoretical guidance and suggestions for promoting the development of low-carbon transportation innovation.

Automated Molding Design Methodology to Optimize Multiple defects in Injection Molded Parts

  • Park, Jong-Cheon;Kim, Byung H.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.133-145
    • /
    • 2000
  • Plastic molding designers are frequently faced with optimizing multiple defects in injection molded parts. these defects are usually in conflict with each other, and thus a tradeoff needs to be made reach a final compromised solution. In this study, an automated injection molding design methodology has been developed to optimize multiple defects of injection molded parts. Two features of the proposed methodology are as follows: one is to apply the utility theory to transform the original multiple objective optimization problem into single objective optimization problem with utility as objective function, the other is an implementation of a direct search-based injection molding optimization procedure with automated consideration of process variation. The modified complex method is used as a general optimization tool in this research. The developed methodology was applied to an actual molding design and the results showed that the methodology was useful through the CAE simulation using a commercial injection molding software package. Applied to production, this study will be of immense value to industry in reducing the product development time and enhancing the product quality.

  • PDF