• 제목/요약/키워드: Users' trust

검색결과 582건 처리시간 0.036초

인터넷 쇼핑몰의 신뢰 결정요인에 관한 실증연구 : 한.중국 이용자 비교 분석 (An Empirical Study on the Determinants of Trust in Internet Shopping Mall : The Comparison of Korean and Chinese Users)

  • 정철호;정영수
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2006년도 춘계학술대회
    • /
    • pp.437-462
    • /
    • 2006
  • The objective of this study is to investigate what factors influence a major role in building trust on Internet shopping mall and to examine whether these factors on trust have differences between Korean and Chinese users. Based on relevant literature review, this study posits six factors of transaction security, perceived reputation, Perceived size, interactivity, propensity of trust, and familiarity as key determinants of trust in internet shopping mall. Analysis of 470 responses(Korean: 320 users, Chinese: 150 users) of survey questionnaire indicates the following; First, in terms of the relationship between influencing factors and the trust, five factors of transaction security, perceived reputation, perceived size, interactivity, and propensity to trust have a significant positive effects on the trust. Second, the differences between Korean and Chinese users are transaction security, perceived size, and familiarity. In conclusions, we suggested the factors to create user trust in internet shopping mall. Also we suggested differences in the determinant factors between Korean and Chinese users, and discussed some policies to build the trust in each user types.

  • PDF

페이스북 사용자간 내재된 신뢰수준 예측 방법 (Prediction Method for the Implicit Interpersonal Trust Between Facebook Users)

  • 송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제20권2호
    • /
    • pp.177-191
    • /
    • 2013
  • Social network has been expected to increase the value of social capital through online user interactions which remove geographical boundary. However, online users in social networks face challenges of assessing whether the anonymous user and his/her providing information are reliable or not because of limited experiences with a small number of users. Therefore. it is vital to provide a successful trust model which builds and maintains a web of trust. This study aims to propose a prediction method for the interpersonal trust which measures the level of trust about information provider in Facebook. To develop the prediction method. we first investigated behavioral research for trust in social science and extracted 5 antecedents of trust : lenience, ability, steadiness, intimacy, and similarity. Then we measured the antecedents from the history of interactive behavior and built prediction models using the two decision trees and a computational model. We also applied the proposed method to predict interpersonal trust between Facebook users and evaluated the prediction accuracy. The predicted trust metric has dynamic feature which can be adjusted over time according to the interaction between two users.

The Impact of Interactivity on Users' Acceptance of Online Streaming Video from the Perspective of Flow Theory

  • Ren Xingyu;Hyuksoo Kim
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.18-30
    • /
    • 2024
  • With the recent popularity and technological development of online streaming video, interactive digital narrative (IDN hereafter) videos became one of the main formats for users. The current study proposed that the level of interactivity of IDN videos influences users' evaluation of the video. The concept of flow was introduced as a mediating variable between interactivity and the users' evaluation. Further, the type of IDN videos, users' familiarity with IDN videos and trust toward platforms were employed as moderating variables. Data from a survey verified the mediating role of flow, moderating role of users' familiarity and trust toward platforms. the type of IDN videos, users' familiarity with IDN videos and trust toward platforms. We have observed a significant moderating effect of users' trust toward the platform on users' evaluation resulting from flow experience. It is evident that the higher the level of users' trust towards the platform, the less pronounced the impact of flow experience on users' evaluation. Theoretical and managerial implications are discussed.

SNS에서 대인신뢰의 영향요인 : 트위터 사용자 경우 (Antecedents of Interpersonal Trust in SNS : In Case of Twitter Users)

  • 우관란;송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제19권2호
    • /
    • pp.197-215
    • /
    • 2012
  • SNS has been recognized as a means of expanding social capital by promoting interaction and efficient communication among users. On the other hand, there are serious concerns on negative side of social network which is often called epidemics. Trust plays a critical role in controlling the spread of distorted information and vicious rumor as well as reducing uncertainties and risk from unreliable users in social network. This study focuses on what the antecedents of interpersonal trust are in social network. We performed online survey from 252 Twitter users and tested candidate antecedents which are chosen from previous literature. As a result, propensity to trust of trustor, ability and sincerity of trustee, intimacy between trustor and trustee significantly affected to the interpersonal trust in Twitter.

사회네트워크에서 사용자 행위정보를 활용한 퍼지 기반의 신뢰관계망 추론 모형 (A Fuzzy-based Inference Model for Web of Trust Using User Behavior Information in Social Network)

  • 송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제17권4호
    • /
    • pp.39-56
    • /
    • 2010
  • We are sometimes interacting with people who we know nothing and facing with the difficult task of making decisions involving risk in social network. To reduce risk, the topic of building Web of trust is receiving considerable attention in social network. The easiest approach to build Web of trust will be to ask users to represent level of trust explicitly toward another users. However, there exists sparsity issue in Web of trust which is represented explicitly by users as well as it is difficult to urge users to express their level of trustworthiness. We propose a fuzzy-based inference model for Web of trust using user behavior information in social network. According to the experiment result which is applied in Epinions.com, the proposed model show improved connectivity in resulting Web of trust as well as reduced prediction error of trustworthiness compared to existing computational model.

  • PDF

사회네트워크에서 잠재된 신뢰관계망 추론을 위한 ANFIS 모형

  • 송희석
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2010년도 춘계국제학술대회
    • /
    • pp.277-287
    • /
    • 2010
  • We are sometimes interacting with people who we know nothing and facing with the difficult task of making decisions involving risk in social network. To reduce risk, the topic of building Web of trust is receiving considerable attention in social network. The easiest approach to build Web of trust will be to ask users to represent level of trust explicitly toward another users. However, there exists sparsity issue in Web of trust which is represented explicitly by users as well as it is difficult to urge users to express their level of trustworthiness. We propose a fuzzy-based inference model for Web of trust using user behavior information in social network. According to the experiment result which is applied in Epinions.com, the proposed model show improved connectivity in resulting Web of trust as well as reduced prediction error of trustworthiness compared to existing computational model.

  • PDF

소셜네트워크에서 신뢰의 전이성과 결합성에 관한 연구 (A Study on Transitivity and Composability of Trust in Social Network)

  • 송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제18권4호
    • /
    • pp.41-53
    • /
    • 2011
  • Trust prediction between users in social network based on the trust propagation assumes properties of transitivity and composability of trust propagation. But it has been hard to find studies which test on how those properties have been operated in real social network. This study aims to validate if the longer the distance of trust paths and the less the numbers of trust paths, the higher prediction error occurs using two real social network data set. As a result, the longer the distance of trust paths, we can find higher prediction error when predicting level of trust between source and target users. But we can not find decreasing trend of prediction error though the possible number of trust paths between source and target users increases.

Is Trust Transitive and Composable in Social Networks?

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • 제20권4호
    • /
    • pp.191-205
    • /
    • 2013
  • Recently, the topic of predicting interpersonal trust in online social networks is receiving considerable attention, because trust plays a critical role in controlling the spread of distorted information and vicious rumors, as well as reducing uncertainties and risk from unreliable users in social networks. Several trust prediction models have been developed on the basis of transitivity and composability properties of trust; however, it is hard to find empirical studies on whether and how transitivity and composability properties of trust are operated in real online social networks. This study aims to predict interpersonal trust between two unknown users in social networks and verify the proposition on whether and how transitivity and composability of trust are operated in social networks. For this purpose, we chose three social network sites called FilmTrust, Advogato, and Epinion, which contain explicit trust information by their users, and we empirically investigated the proposition. Experimental results showed that trust can be propagated farther and farther along the trust link; however, when path distance becomes distant, the accuracy of trust prediction lowers because noise is activated in the process of trust propagation. Also, the composability property of trust is operated as we expected in real social networks. However, contrary to our expectations, when the path is synthesized more during the trust prediction, the reliability of predicted trust did not tend to increase gradually.

사용자 간 신뢰관계 네트워크 분석을 활용한 협업 필터링 알고리즘의 예측 정확도 개선 (Enhancing Predictive Accuracy of Collaborative Filtering Algorithms using the Network Analysis of Trust Relationship among Users)

  • 최슬비;곽기영;안현철
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.113-127
    • /
    • 2016
  • 협업 필터링(Collaborative Filtering)은 유용성과 정교성 면에서 가장 성공적인 추천 알고리즘으로 평가받으며 산업계나 학계에서 많이 활용 및 연구되고 있지만, 기본적으로 사용자들이 평가한 점수에만 기반하여 추천결과를 생성하는 한계점이 있다. 이에 본 연구는 사용자가 상품을 구매할 때 자신이 신뢰하는 타인의 추천을 더 적극적으로 수용할 것이라는 점에 착안하여, 사용자의 평점 외에 사용자 간 신뢰관계를 소셜네트워크분석으로 분석한 결과를 추가로 반영하는 추천 알고리즘들을 제안하였다. 구체적으로 본 연구에서는 소셜네트워크분석에서 네트워크 내의 중심적 위치를 나타내는 척도인 내향 및 외향 중심성을 활용하여 사용자 간 유사도를 산출하는 알고리즘들과 사용자 신뢰 네트워크를 탐색하여 추천 대상이 되는 사용자가 직접 간접적으로 신뢰하는 사용자의 평가점수를 보다 높게 반영하는 알고리즘을 제안한 뒤 그 성능을 비교해 보았다. 실제 데이터에 적용하여 분석한 결과, 사용자 신뢰 네트워크의 내향 중심성 지수를 조건 없이 적용한 경우에는 오히려 정확도의 감소만을 야기하는 것으로 나타났고, 일정 임계치 이상의 외향 중심성을 갖는 사용자에 한해 내향 중심성 지수를 고려한 추천 알고리즘은 전통적인 협업 필터링에 비해 약간의 정확도 개선이 이루어짐을 확인할 수 있었다. 아울러, 사용자 신뢰 네트워크를 기반으로 탐색하는 알고리즘이 가장 우수한 성능을 보이는 것을 알 수 있었으며, 전통적인 협업 필터링과 비교해서도 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.

사용자 간 신뢰·불신 관계 네트워크 분석 기반 추천 알고리즘에 관한 연구 (A Study on the Recommendation Algorithm based on Trust/Distrust Relationship Network Analysis)

  • 노희룡;안현철
    • Journal of Information Technology Applications and Management
    • /
    • 제24권1호
    • /
    • pp.169-185
    • /
    • 2017
  • This study proposes a novel recommendation algorithm that reflects the results from trust/distrust network analysis as a solution to enhance prediction accuracy of recommender systems. The recommendation algorithm of our study is based on memory-based collaborative filtering (CF), which is the most popular recommendation algorithm. But, unlike conventional CF, our proposed algorithm considers not only the correlation of the rating patterns between users, but also the results from trust/distrust relationship network analysis (e.g. who are the most trusted/distrusted users?, whom are the target user trust or distrust?) when calculating the similarity between users. To validate the performance of the proposed algorithm, we applied it to a real-world dataset that contained the trust/distrust relationships among users as well as their numeric ratings on movies. As a result, we found that the proposed algorithm outperformed the conventional CF with statistical significance. Also, we found that distrust relationship was more important than trust relationship in measuring similarities between users. This implies that we need to be more careful about negative relationship rather than positive one when tracking and managing social relationships among users.