Journal of the Korea Institute of Information Security & Cryptology
/
v.20
no.5
/
pp.59-67
/
2010
In the paper, we proposed an IM-ACM(Insider Misuse-Access Control Model) for preventing illegal information leakage by insider who exploits his legal rights in the ubiquitous computing environment. The IM-ACM can monitor whether insider uses data rightly using misuse monitor add to CA-TRBAC(Context Aware-Task Role Based Access Control) which permits access authorization according to user role, context role, task and entity's security attributes. It is difficult to prevent information leakage by insider because of access to legal rights, a wealth of knowledge about the system. The IM-ACM can prevent the information flow between objects which have the different security levels using context role and security attributes and prevent an insider misuse by misuse monitor which comparing an insider actual processing behavior to an insider possible work process pattern drawing on the current defined profile of insider's process.
Journal of Korean Tunnelling and Underground Space Association
/
v.6
no.4
/
pp.291-302
/
2004
Blast-induced anisotropic rock damage around a blast-hole was analyzed by a using numerical method with user-defined subroutine based on continuum damage mechanics. Anisotropic blasting pressure was evaluated by applying anisotropic ruck characteristics to analytical solution which is a function of explosive and rock properties. Anisotropic rock damage was evaluated by applying the proposed anisotropic blasting pressure. Blast-induced isotropic rock damage was also analyzed. User-defined subroutines to solve anisotropic and isotropic damage model were coded. Initial rock damages in natural ruck were considered in anisotropic and isotropic damage models. Blasting pressure and elastic modulus of rock were major influential parameters from parametric analysis results of isotropic rock damage. From the results of anisotropic rock damage analysis, blasting pressure was the most influential parameter. Anisotropic rock damage area in horizontal direction was approximately 34% larger and about 12% smaller in vertical direction comparing with isotropic rock damage area. Isotropic rock damage area under fully coupled charge condition was around 30 times larger than that under decoupled charge condition. Blasting pressure under fully coupled charge condition was estimated to be more than 10 times larger than that of decoupled charge condition.
Nowadays, XML has been favored by many companies internally and externally as a means of sharing and distributing data. there are many researches and systems for modeling and storing XML documents by an object-oriented method as for the method of saving and managing web-based multimedia document more easily. The representative tool for the object-oriented modeling of XML documents is UML (Unified Modeling Language). UML at the beginning was used as the integrated methodology for software development, but now it is used more frequently as the modeling language of various objects. Currently, UML supports various diagrams for object-oriented analysis and design like class diagram and is widely used as a tool of creating various database schema and object-oriented codes from them. This paper proposes an Efficinet Query Modelling of XML-GL using the UML class diagram and OCL for searching XML document which its application scope is widely extended due to the increased use of WWW and its flexible and open nature. In order to accomplish this, we propose the modeling rules and algorithm that map XML-GL. which has the modeling function for XML document and DTD and the graphical query function about that. In order to describe precisely about the constraint of model component, it is defined by OCL (Object Constraint Language). By using proposed technique creates a query for the XML document of holding various properties of object-oriented model by modeling the XML-GL query from XML document, XML DTD, and XML query while using the class diagram of UML. By converting, saving and managing XML document visually into the object-oriented graphic data model, user can prepare the base that can express the search and query on XML document intuitively and visually. As compared to existing XML-based query languages, it has various object-oriented characteristics and uses the UML notation that is widely used as object modeling tool. Hence, user can construct graphical and intuitive queries on XML-based web document without learning a new query language. By using the same modeling tool, UML class diagram on XML document content, query syntax and semantics, it allows consistently performing all the processes such as searching and saving XML document from/to object-oriented database.
If one can infer the residential area of SNS users by analyzing the SNS big data, it can be an alternative by replacing the spatial big data researches which result from the location sparsity and ecological error. In this study, we developed the way of utilizing the daily life activity pattern, which can be found from timeline data of tweet users, to infer the residential areas of tweet users. We recognized the daily life activity pattern of tweet users from user's movement pattern and the regional cognition words that users text in tweet. The models based on user's movement and text are named as the daily movement pattern model and the daily activity field model, respectively. And then we selected the variables which are going to be utilized in each model. We defined the dependent variables as 0, if the residential areas that users tweet mainly are their home location(HL) and as 1, vice versa. According to our results, performed by the discriminant analysis, the hit ratio of the two models was 67.5%, 57.5% respectively. We tested both models by using the timeline data of the stress-related tweets. As a result, we inferred the residential areas of 5,301 users out of 48,235 users and could obtain 9,606 stress-related tweets with residential area. The results shows about 44 times increase by comparing to the geo-tagged tweets counts. We think that the methodology we have used in this study can be used not only to secure more location data in the study of SNS big data, but also to link the SNS big data with regional statistics in order to analyze the regional phenomenon.
Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
Journal of Intelligence and Information Systems
/
v.25
no.1
/
pp.163-177
/
2019
As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.
Accurate understanding of land surface is essential to analyze energy exchanges between earth surface and atmosphere. For the quantization of energy fluxes, the various researches about Land Surface Model(LSM) have been progressed. Among the various LSMs, the researches using Common Land Model(CLM) and Variable Infiltration Capacity(VIC) model are performed briskly. The CLM which is advanced LSM can calculate realistic results with few user defined parameters. The VIC model which is also typical LSM is widely used for estimation of energy fluxes and runoff in various fields. In this study, the energy fluxes which are net radiation, sensible heat flux, and latent heat flux were estimated using CLM and VIC model at Southern Sierra-Critical Zone Observatory(SS-CZO) site in California, United States. In case of net radiation and sensible heat flux, both models showed good agreement with observations, however, the CLM showed underestimated patterns of net radiation and sensible heat flux during precipitation period. In case of latent heat flux, the CLM represented better estimation of latent heat flux than VIC model which underestimated the latent heat flux. Through the estimation of energy fluxes and analysis of models' pros and cons, the applicability of CLM and VIC models and need of multi-model application were identified.
This paper presents the development of certain efficient method for expressing the emotion of an avatar based on the facial expression recognition. This new method is not changing a facial expression of the avatar manually. It can be changing a real time facial expression of the avatar based on recognition of a facial pattern which can be captured by a web cam. It provides a tool for recognizing some part of images captured by the web cam. Because of using the model-based approach, this tool recognizes the images faster than other approaches such as the template-based or the network-based. It is extracting the shape of user's lip after detecting the information of eyes by using the model-based approach. By using changes of lip's patterns, we define 6 patterns of avatar's facial expression by using 13 standard lip's patterns. Avatar changes a facial expression fast by using the pre-defined avatar with corresponding expression.
Journal of Satellite, Information and Communications
/
v.7
no.3
/
pp.8-15
/
2012
Adaptive transmission technique is an effective means to counter-measure rain attenation that is one of the most significant factors degrading link quality in satellite communication systems. This paper introduces a simulator for adaptive transmission technique to compensate rain attenuation. In the simulator, a dynamic rain attenuation model is loaded, which was developed to synthesize Korean rain attenuation dynamics at a frequency band of Ka. It is a Markov chain model with rain attenuation parameters extracted from the rain attenuation data measured per second. In addition, various transmission schemes are embedded so that a user defined simulations can be performed. This paper demonstrates simulation results of adaptive schemes in comprison with fixed schemes, and show the efficiency of the adaptive schemes to compensate the rain attenuation.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.1
/
pp.110-115
/
2005
This paper proposes the method to detect contours of a face, eyes and a mouth in a color image for making an avatar automatically. First, we use the HSI color model to exclude the effect of various light condition, and we find skin regions in an input image by using the skin color is defined on HS-plane. And then, we use deformable templates and Genetic Algorithm(GA) to detect contours of a face, eyes and a mouth. Deformable templates consist of B-spline curves and control point vectors. Those can represent various shape of a face, eyes and a mouth. And GA is very useful search procedure based on the mechanics of natural selection and natural genetics. Second, an avatar is created automatically by using contours and Fuzzy C-means clustering(FCM). FCM is used to reduce the number of face color As a result, we could create avatars like handmade caricatures which can represent the user's identity, differing from ones generated by the existing methods.
Component-based Development is gaining a wide acceptance as an economical software development paradigm to develop applications by utilizing reusable software components. Well-defined interface manages coupling and cohesion between components, minimizes the effect on the user in case of component evolvement, and enhances reusability, extendibility and maintainability. Therefore, study on systematic development process and design guidelines for component interface has been required since the component has been introduced. In this paper, we propose three types of interfaces based on software architecture layers and functionality types; Provided Interface which provides functionality of a component, Required Interface which specifies required functionality that is provided by other components, and Customize Interface which tailors the component to customer's requirement. In addition, we suggest design criteria for well-designed interface, and systematic process and instructions for designing interface. We firstly cluster operations extracted from use case model and class model to identify Provided interfaces, and design Customize interfaces based on artifacts for variability. We also specify Required interfaces by identifying dependency among interfaces. Proposed interface design method provides traceability, throughout the component interface design. And furthermore, proposed guidelines support practical design for high quality component based on a case study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.