• 제목/요약/키워드: User subroutine program

검색결과 30건 처리시간 0.021초

형상기억합금 스트립 작동기를 이용한 구조물의 형상 변형 해석 (Deformation Analysis of the Structures with SMA Strip Actuator)

  • 노진호;한재홍;이인
    • 한국항공우주학회지
    • /
    • 제33권11호
    • /
    • pp.1-6
    • /
    • 2005
  • 본 연구에서는 형상기억합금 작동기의 열-기계적 특성과 구조물의 응용을 살펴보았다. Lagoudas 모델을 기본으로 3-D 형상기억합금의 구성방정식을 FORTRAN으로 해석 알고리즘을 만들어 user material(UMAT) subroutine을 개발하였다. 개발된 형상기억합금 해석 UMAT subroutine을 상용 프로그램 ABAQUS와 연계 해석하여 형상기억합금 작동기와 주 구조물간의 상호 특성을 수치적으로 살펴보았다.

연구용 원자로의 건전성 평가를 위한 수치해석적 중성자 조사 재료변형 예측기법 개발 (A Numerical Technique for Predicting Deformation due to Neutron Irradiation for Integrity Assessment of Research Reactors)

  • 박준근;석태현;허남수
    • 한국압력기기공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.39-48
    • /
    • 2024
  • Research reactors are operated under ambient temperature and atmospheric pressure, which is much less severe conditions compared to those in typical nuclear power plants. Due to the high temperature, heat resistant materials such as austenite stainless steel should be used for the reactors in typical nuclear power plants. Whereas, as the effect of temperature is low for research reactors, materials with high resistance to neutron irradiation, such as zircaloy and beryllium, are used. Therefore, these conditions should be considered when performing integrity assessment for research reactors. In this study, a computational technique through finite element (FE) analysis was developed considering the operating conditions and materials of research reactor when conducting integrity assessment. Neutron irradiation analysis techniques using thermal expansion analysis were proposed to consider neutron irradiation growth and swelling in zirconium alloys and beryllium. A user subroutine program that can calculate the strain rate induced by neutron irradiation creep was developed for use in the commercial analysis program Abaqus. To validate the proposed technique and the user subroutine, FE analysis results were compared with hand-calculation results, and showed good agreement. Consequently, developed technique and user subroutine are suitable for evaluating structural integrity of research reactors.

Conversion of ABAQUS user Material Subroutines

  • Yang, Seung-Yong
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.635-640
    • /
    • 2010
  • When using finite element pogram ABAQUS to compute material characteristics, one builds a user material subroutine if unique constitutive feature needs to be included. In ABAQUS/Standard, UMAT subroutine should be built, and in ABAQUS/Explicit, VUMAT should be used. Although two subroutines carry out the same type of task, two different programs should be made depending on the working environment, and it is not easy to program the subroutines following the manual without enough understanding of solid mechanics. In this paper, difference between UMAT and VUMAT subroutines is epitomized, and a conversion scheme from UMAT to VUMAT is discussed. An example shows that the two programs give the same stress computation result.

Implementation of double scalar elastic damage constitutive model in UMAT interface

  • Liu, Pan Pan;Shen, Bo
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.153-162
    • /
    • 2021
  • This paper aims to simulate the isotropic elastic damage theory of Liu Jun (2012) using the self-programmed UMAT subroutine in the interface of ABAQUS. Liu Jun (2012)'s method based on the mechanic theory can not be used interactively with the currently commonly used finite element software ABAQUS. The advantage of this method in the paper is that it can interact with ABAQUS and provide a constitutive program framework that can be modified according to user need. The model retains the two scalar damage variables and the corresponding two energy dissipation mechanisms and damage criteria for considering the tensile and compressive asymmetry of concrete. Taking C45 concrete as an example, the relevant damage evolution parameters of its tensile and compressive constitutive model are given. The study demonstrates that the uniaxial tensile stress calculated by the subroutine is almost the same as the Chinese Concrete Design Specification (GB50010) before the peak stress, but ends soon after the peak stress. The stress-strain curve of uniaxial compression calculated by the subroutine is in good agreement with the peak stress in Chinese Concrete Design Specification (GB50010), but there is a certain deviation in the descending stage. In addition, this paper uses the newly compiled subroutine to simulate the shear bearing capacity of the shear key in a new structural system, namely the open-web sandwich slab. The results show that the damage constitutive subroutine has certain reliability.

중성자 조사에 따른 오스테나이트 스테인리스 강의 기계적 재료거동 변화를 고려한 사용자 정의 보조 프로그램 개발 (Development of User Subroutine Program Considering Effect of Neutron Irradiation on Mechanical Material Behavior of Austenitic Stainless Steels)

  • 김종성;정명조;박정순;오영진
    • 대한기계학회논문집A
    • /
    • 제37권9호
    • /
    • pp.1127-1132
    • /
    • 2013
  • 원자로 내부구조물은 파손시 원자로 안전 운전/정지에 주요한 영향을 미칠 수 있으며 중성자 조사 수준이 높아 중성자 조사와 관련된 다양한 열화가 발생하였거나 잠재적으로 발생할 수 있다. 원자로 내부구조물의 주요 재질인 오스테나이트 스테인리스 강은 중성자 조사에 따라 인장/크리프 물성, 파괴인성 등 기계적 재료 거동에 변화가 발생한다. 각종 열화기구에 대한 원자로 내부구조물의 구조 건전성이 설계수명 또는 계속운전 기간 동안 유지됨을 평가할 때 중성자 조사에 따른 기계적 재료거동의 변화를 고려하여야 한다. 본 연구에서는 중성자 조사에 따른 기계적 재료거동의 변화를 고려한 사용자 정의 보조 프로그램을 개발하였다. 개발된 사용자 정의 보조 프로그램을 다양한 조건에 대해 검증한 결과, 타당함을 확인하였다.

ABAQUS User Material(UMAT)을 이용한 콘크리트 비선형 해석 (Nonlinear Analysis of Concrete Using ABAQUS User Material(UMAT))

  • 조병완;김장호;김영진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.145-152
    • /
    • 2003
  • This paper develops a relatively comprehensive and sophisticated constitutive model of concrete for finite element analysis of concrete structures. The present model accounts for the hydrostatic pressure sensitivity and Lode angle dependence behavior of concrete, not only in its strength criterion, but also in its hardening characteristics. The implementation is carried out through incorporating the developed concrete model in User Subroutine Material(UMAT) of the general-purpose FE program ABAQUS(v.5.8). It is found that the model can sufficiently predict the hardening as well as the softening behaviour of concrete under high confining pressure.

  • PDF

저주기 피로해석을 위한 다층모델의 재료상수 추출에 관한 연구 (Study on the Material Parameter Extraction of the Overlay Model for the Low Cycle Fatigue(LCF) Analysis)

  • 김상호;카비르 후마이언;여태인
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.66-73
    • /
    • 2010
  • This work was focused on the material parameter extraction for the isothermal cyclic deformation analysis for which Chaboche(Combined Nonlinear Isotropic and Kinematic Hardening) and Overlay(Multi Linear Hardening) models are normally used. In this study all the parameters were driven especially based on Overlay theories. A simple method is suggested to find out best material parameters for the cyclic deformation analysis prior to the isothermal LCF(Low Cycle Fatigue) analysis. The parameter extraction was done using 400 series stainless steel data which were published in the reference papers. For simple and quick review of the parameters extracted by suggested method, 1D FORTRAN program was developed, and this program could reduce the time for checking the material data tremendously. For the application to FE code ABAQUS user subroutine for the material models was developed by means of UMAT(User Material Subroutine), and the stabilized hysteresis loops obtained by the numerical analysis were in good harmony with test results.

궤도차량을 위한 동특성 해석 프로그램 개발 (Development of a Dynamic Analysis Program for Tracked Vehicles)

  • 최윤상;이영신
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.29-35
    • /
    • 2002
  • A simulation program for vehicle dynamic analysis was developed. The Cartesisn coordinate system was used for translational motion and the Euler angle system was used for rotational motion. A three dimensional multi-wheeled vehicle model and equations of motion were derived. Also static equilibrium analysis was added for initial vehicle condition setting. The program user can describe the exact characteristics of suspension spring force and damping force in the user subroutine. A wheel-ground contact model which represents geometrical effect was developed. Two cases of simulation for 16 D.O.F. vehicle model were conducted to validate the developed program by comparing the simulation results with the experimental data.

ATB 프로그램에서 삼점식 좌석 벨트 모델의 구현 (Implementation of 3-point Seat Belt Model into ATB Program)

  • 전규남;손권;최경현
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.145-154
    • /
    • 2003
  • Occupant simulation models have been used to study trends or specific design changes in several typical crash situations. The ATB, Articulated Total Body, was developed and used to predict gross human body responses to vehicle crashes and pilot ejections. Since the ATB source code is open to public, the user can add their own defined modules and functions. The introduction of seat belts into cars significantly decreased the injury risk of passengers in frontal impacts. In this paper, a new seat belt model was developed and implemented into the ATB. For this purpose, a subroutine of the new seat belt was constructed. A force-deflection function was added to replace an existing function to consider energy absorption. The function includes hysteresis effects of the experiment data of the loading and unloading parts of the seat belt load-extension curve. Moreover, this belt model considers a slip between ellipsoid and belt segments. This paper attempted to validate the ATB program which includes the subroutine of new belt models comparing with the real car frontal crash experiments and MADYMO frontal models. The analysis focusses on the human movement and body accelerations.

Numerical Modeling of Floating Electrodes in a Plasma Processing System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • 제24권4호
    • /
    • pp.102-110
    • /
    • 2015
  • Fluid model based numerical analysis is done to simulate a plasma processing system with electrodes at floating potential. $V_f$ is a function of electron temperature, electron mass and ion mass. Commercial plasma fluid simulation softwares do not provide options for floating electrode boundary value condition. We developed a user subroutine in CFD-ACE+ and compared four different cases: grounded, dielectric, zero normal electric field and floating electric potential for a 2D-CCP (capacitively coupled plasma) with a ring electrode.