• Title/Summary/Keyword: User subroutine

Search Result 144, Processing Time 0.028 seconds

A micromechanical model for ceramic powders (세라믹 분말의 변형거동 해석을 위한 미소역학모델)

  • Ha, Sang-Yul;Park, Tae-Uk;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.668-673
    • /
    • 2008
  • In this paper, we developed a physically-based micromechanical model for inelastic deformation of ceramic powders. The aggregate response of ceramic particles was modeled using the two-surface yield function which considered the shear-induced dilatancy caused by friction, rolling resistance and cohesion between powder particles and consolidation caused by plastic deformation of powder themselves under high compression. The constitutive equations were implemented into the user-subroutine VUMAT of finite element program ABAQUS/Explicit. The material parameters in the constitutive model were identified by calibrating the model to reproduce data from triaxial compression tests and simple compression tests. The density distribution obtained by using the proposed model was in good quantitative agreement with the experimental results of the triaxial compression and cold isostaic compression as well.

  • PDF

Analysis on the Composite Laminated Plate Subjected to Low Velocity Impact (저속 충격을 받는 복합재료 적층판의 손상해석)

  • Lee, Ho-Chul;Lee, Young-Shin;Kim, Jae-Hoon;Jeon, Je-Choon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.244-249
    • /
    • 2000
  • Recently, composite material which has much excellent mechanical characteristics has been applied in many industries. However, it has a brittle characteristic under impact event. Especially, its invisible characteristics of the damaged area has been the motivation of many engineers investigation, and the nonlinearity of the impact mechanism is one of the main reason to assume the damaged area too simple. The damage mechanism of the composite laminated plate subjected to low velocity impact using ABAQUS/Standard & user subroutine was presented here.

  • PDF

Finite Element Analysis for Rate-Independent Crystal Plasticity Model (속도 독립성 결정소성모델의 유한요소해석)

  • Ha, Sang-Yul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.447-454
    • /
    • 2009
  • Rate-independent crystal plasticity model suffers from the non-uniqueness of activated slip systems and the determination of the shear slip rates on the active slip systems. In this paper, a time-integration algorithm which circumvents the problem of the multiplicity of the slip systems was developed and implemented into the user subroutine VUMAT of a commercial finite element program ABAQUS. The magnitude of the slip shears on the active slip systems in f.c.c Cu single crystal aligned with the specific crystallographic orientation was investigated to validate our solution procedure. Also, texture developments under various deformation modes such as simple compression, simple tension and plane strain compression were compared with the results of the rate-dependent model by using the rate-independent crystal plasticity model. The computation time employing the rate-independent model is much more reduced than the those of the rate-dependent model.

플라즈마 펄싱을 이용한 건식 식각 공정의 수치 모델링

  • Ju, Jeong-Hun;Kim, Nam-Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.216.2-216.2
    • /
    • 2014
  • 플라즈마의 연속 운전 조건은 플라즈마 발생원의 기하적, 전기적 특성에 의한 공정 특성을 갖는다. RF power를 pulsing하는 경우 off시간에 하전 입자와 중성 라디칼의 소멸 특성의 차이로 인하여 나노 미세 구조의 식각에 유리한 측면이 있다. 유도 결합 플라즈마원을 주발생원으로 이용하는 건식 식각장비의 기판 바이어스를 rf pulsing하는 경우 유체 모델을 이용한 계산 방법에서 rf off 시간 중의 2차 전자 발생 계수를 rf on time시와 동일 하게 계산하거나 입사 이온의 에너지와 무관하게 0.05 등의 상수로 처리하는 경우가 많은데 본 연구에서는 rf bias off 시간 동안의 SEC(secondary electron coefficient)를 변화시키는 조건이 플라즈마의 특성에 어떤 영향을 미치는지 CFD-ACE+에 user subroutine을 이용하여 조사하였다.

  • PDF

Prediction of Spring-in Deformation of Carbon Fiber Reinforced Composite by Thermal Residual Stress (복합재 성형후 열잔류응력에 의한 변형 연구)

  • Kim, Yong-Seung;Kim, Wie-Dae
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.410-415
    • /
    • 2017
  • This paper predicted deformation due to thermal residual stress in composites using finite element analysis. Temperature cycle, Model shape, Laminate angle, Stacking sequence, chemical shrinkage of resin, and thermal expansion are affect composite deformation. Compare the results of the analytical model with the actual model of the same shape. This paper suggests that the analytical results can be applied to actual Model.

Analysis of Wrinkling Behavior for Anisotropic Membrane (비등방성 멤브레인의 주름 거동 해석)

  • Woo, Kyeong-Sik;Nam, Duk-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.48-55
    • /
    • 2005
  • In this paper, wrinkling behavior for anisotropic membrane was studied. The analyses were done by using membrane elements and the wrinkling was accounted for by the penalty parameter modified material modeling which was implemented to ABAQUS as a user subroutine. The wrinkle model was applied to corner-loaded square membranes in which the effect of the diameter of steel pin, edge cut-off length and the magnitude of shear moduli on the wrinkling was investigated.

Modeling Constitutive Behavior of Mg Alloy Sheets for the Prediction of Sheet Springback (마그네슘 합금 판재의 구성식 개발: 스프링백에의 응용)

  • Lee, M.G.;Kim, S.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.67-69
    • /
    • 2007
  • Unusual mechanical constitutive behavior of magnesium alloy sheets has been implemented into the finite element program ABAQUS via user material subroutine. For the verification purpose, the springback of AZ31B magnesium alloy sheet was measured using the unconstrained cylindrical bending test of Numisheet'2002. In addition to the developed constitutive models, the other two models based on isotropic constitutive equations with tensile and compressive properties were also considered. Preliminary comparisons have been made between simulated results by the finite element analysis and corresponding experiments and the newly proposed model showed enhanced prediction capability in springback prediction.

  • PDF

Viscoelastic behavior on composite beam using nonlinear creep model

  • Jung, Sung-Yeop;Kim, Nam-Il;Shin, Dong Ku
    • Steel and Composite Structures
    • /
    • v.7 no.5
    • /
    • pp.355-376
    • /
    • 2007
  • The purpose of this study is to predict and investigate the time-dependent creep behavior of composite materials. For this, firstly the evaluation method for the modulus of elasticity of whole fiber and matrix is presented from the limited information on fiber volume fraction using the singular value decomposition method. Then, the effects of fiber volume fraction on modulus of elasticity of GFRP are verified. Also, as a creep model, the nonlinear curve fitting method based on the Marquardt algorithm is proposed. Using the existing Findley's power creep model and the proposed creep model, the effect of fiber volume fraction on the nonlinear creep behavior of composite materials is verified. Then, for the time-dependent analysis of a composite material subjected to uniaxial tension and simple shear loadings, a user-provided subroutine UMAT is developed to run within ABAQUS. Finally, the creep behavior of center loaded beam structure is investigated using the Hermitian beam elements with shear deformation effect and with time-dependent elastic and shear moduli.

Coupled CFD-FE Analysis Method for IC Engine Cooling Water Jacket under Subcooled Nucleate Boiling Conditions (핵비등 열전달 효과를 고려한 내연기관 냉각수로의 CFD-FE 연성해석 기법)

  • Lee, Myung-Hoon;Kim, Dong-Kwang;Lee, Sang-Kyoo;Rhim, Dong-Ryul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.9-16
    • /
    • 2006
  • The present study is to simulate coolant flow in IC engine cooling passages under subcooled nucleate boiling conditions and investigate thermal stress analysis of the solid part. To consider nucleate boiling heat transfer effect, Chen's empirical formula is used through user subroutine programing in CFD code and then nucleate boiling model is compared with Robinson's experimental results, which shows reasonable agreement. This Chen's nucleate boiling model is applied to single cylinder IC engine model and we do cylinder liner thermal stress analysis using commercial FEM code.

Assessment of Grain Size Distribution in Direct Age Processed Alloy 718 (직접시효 처리된 Alloy 718의 결정립분포 해석)

  • Park N. K.;Kim J. H.;Eum C. Y.;Lee C. S.;Yeom J. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • The microstructure evolution of Alloy 718 during the direct age(DA) process was predicted using the recrystallization model and finite element analysis. The DA process of Alloy 718 was performed in two-step forging using capsulated cylindrical billets of 122mm in diameter and 180mm in height. In order to evaluate the microstructural change during the forging, a dynamic recrystallization model of Alloy 718 was implemented onto the user-subroutine of the commercial FEM code. The prediction of microstructure evolution in DA processed Alloy 718 pancake was compared with experimental results.

  • PDF