• 제목/요약/키워드: User recommendation

검색결과 911건 처리시간 0.032초

A Study on Image Recommendation System based on Speech Emotion Information

  • Kim, Tae Yeun;Bae, Sang Hyun
    • 통합자연과학논문집
    • /
    • 제11권3호
    • /
    • pp.131-138
    • /
    • 2018
  • In this paper, we have implemented speeches that utilized the emotion information of the user's speech and image matching and recommendation system. To classify the user's emotional information of speech, the emotional information of speech about the user's speech is extracted and classified using the PLP algorithm. After classification, an emotional DB of speech is constructed. Moreover, emotional color and emotional vocabulary through factor analysis are matched to one space in order to classify emotional information of image. And a standardized image recommendation system based on the matching of each keyword with the BM-GA algorithm for the data of the emotional information of speech and emotional information of image according to the more appropriate emotional information of speech of the user. As a result of the performance evaluation, recognition rate of standardized vocabulary in four stages according to speech was 80.48% on average and system user satisfaction was 82.4%. Therefore, it is expected that the classification of images according to the user's speech information will be helpful for the study of emotional exchange between the user and the computer.

Cody Recommendation System Using Deep Learning and User Preferences

  • Kwak, Naejoung;Kim, Doyun;kim, Minho;kim, Jongseo;Myung, Sangha;Yoon, Youngbin;Choi, Jihye
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.321-326
    • /
    • 2019
  • As AI technology is recently introduced into various fields, it is being applied to the fashion field. This paper proposes a system for recommending cody clothes suitable for a user's selected clothes. The proposed system consists of user app, cody recommendation module, and server interworking of each module and managing database data. Cody recommendation system classifies clothing images into 80 categories composed of feature combinations, selects multiple representative reference images for each category, and selects 3 full body cordy images for each representative reference image. Cody images of the representative reference image were determined by analyzing the user's preference using Google survey app. The proposed algorithm classifies categories the clothing image selected by the user into a category, recognizes the most similar image among the classification category reference images, and transmits the linked cody images to the user's app. The proposed system uses the ResNet-50 model to categorize the input image and measures similarity using ORB and HOG features to select a reference image in the category. We test the proposed algorithm in the Android app, and the result shows that the recommended system runs well.

MBTI-based Recommendation for Resource Collaboration System in IoT Environment

  • Park, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.35-43
    • /
    • 2017
  • In IoT(Internet of Things) environment, users want to receive customized service by users' personal device such as smart watch and pendant. To fulfill this requirement, the mobile device should support a lot of functions. However, the miniaturization of mobile devices is another requirement and has limitation such as tiny display. limited I/O, and less powerful processors. To solve this limitation problem and provide customized service to users, this paper proposes a collaboration system for sharing various computing resources. The paper also proposes the method for reasoning and recommending suitable resources to compose the user-requested service in small device with limited power on expected time. For this goal, our system adopts MBTI(Myers-Briggs Type Indicator) to analyzes user's behavior pattern and recommends personalized resources based on the result of the analyzation. The evaluation in this paper shows that our approach not only reduces recommendation time but also increases user satisfaction with the result of recommendation.

Personalized Recommendation Algorithm of Interior Design Style Based on Local Social Network

  • Guohui Fan;Chen Guo
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.576-589
    • /
    • 2023
  • To upgrade home style recommendations and user satisfaction, this paper proposes a personalized and optimized recommendation algorithm for interior design style based on local social network, which includes data acquisition by three-dimensional (3D) model, home-style feature definition, and style association mining. Through the analysis of user behaviors, the user interest model is established accordingly. Combined with the location-based social network of association rule mining algorithm, the association analysis of the 3D model dataset of interior design style is carried out, so as to get relevant home-style recommendations. The experimental results show that the proposed algorithm can complete effective analysis of 3D interior home style with the recommendation accuracy of 82% and the recommendation time of 1.1 minutes, which indicates excellent application effect.

유비쿼터스 환경에서 상황 데이터 기반 모바일 콘텐츠 서비스를 위한 추천 기법 (Recommendation Method for Mobile Contents Service based on Context Data in Ubiquitous Environment)

  • 권준희;김성림
    • 디지털산업정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.1-9
    • /
    • 2010
  • The increasing popularity of mobile devices, such as cellular phones, smart phones, and PDAs, has fostered the need to recommend more effective information in ubiquitous environments. We propose the recommendation method for mobile contents service using contexts and prefetching in ubiquitous environment. The proposed method enables to find some relevant information to specific user's contexts and computing system contexts. The prefetching has been applied to recommend to user more effectively. Our proposed method makes more effective information recommendation. The proposed method is conceptually comprised of three main tasks. The first task is to build a prefetching zone based on user's current contexts. The second task is to extract candidate information for each user's contexts. The final task is prefetch the information considering mobile device's resource. We describe a new recommendation.

딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구 (A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning)

  • 정민욱;김현지;곽채원;오유수
    • 한국멀티미디어학회논문지
    • /
    • 제25권9호
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

Intelligent recommendation method of intelligent tourism scenic spot route based on collaborative filtering

  • Liu Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1260-1272
    • /
    • 2024
  • This paper tackles the prevalent challenges faced by existing tourism route recommendation methods, including data sparsity, cold start, and low accuracy. To address these issues, a novel intelligent tourism route recommendation method based on collaborative filtering is introduced. The proposed method incorporates a series of key steps. Firstly, it calculates the interest level of users by analyzing the item attribute rating values. By leveraging this information, the method can effectively capture the preferences and interests of users. Additionally, a user attribute rating matrix is constructed by extracting implicit user behavior preferences, providing a comprehensive understanding of user preferences. Recognizing that user interests can evolve over time, a weight function is introduced to account for the possibility of interest shifting during product use. This weight function enhances the accuracy of recommendations by adapting to the changing preferences of users, improving the overall quality of the suggested tourism routes. The results demonstrate the significant advantages of the approach. Specifically, the proposed method successfully alleviates the problem of data sparsity, enhances neighbor selection, and generates tourism route recommendations that exhibit higher accuracy compared to existing methods.

대용량 음악콘텐츠 환경에서의 데이터마이닝 기법을 활용한 추천시스템에 관한 연구 (A Study on Recommendation System Using Data Mining Techniques for Large-sized Music Contents)

  • 김용;문성빈
    • 정보관리학회지
    • /
    • 제24권2호
    • /
    • pp.89-104
    • /
    • 2007
  • 본 연구는 대용량 음악콘텐츠환경에서 개인화 추천 서비스를 위한 기반구조의 제공을 위하여 시도되었다. 추천서비스를 위한 기존의 많은 연구와 상용프로그램에도 불구하고 대규모의 쇼핑몰들은 개인화 추천서비스와 실시간으로 대용량의 데이터를 처리할 수 있는 추천시스템을 필요로 하고 있다. 이를 위하여 본 연구에서는 데이터마이닝 기술과 새로운 패턴매칭 알고리즘을 제안하고 있다. 콘텐츠 주제분야에 대한 이용자의 선호도를 이용한 이용자 분할을 위하여 군집화 기법이 사용되었다. 다음으로는 군집화를 통하여 생성된 분할된 이용자 그룹에서 개별 이용자의 콘텐츠에 대한 접근 패턴의 추출을 위하여 순차패턴 마이닝기법을 적용하였다. 최종적으로 각각의 이용자 군집의 콘텐츠 접근 패턴과 콘텐츠 선호도에 기반한 제안된 추천 알고리즘에 의해 추천이 이루어진다. 이러한 추천을 위하여 기반 구조와 함께, 전처리과정과 원본 데이터의 형식변환이 데이터베이스에서 수행되어진다. 본 연구에서 제안하고 있는 기반구조의 적절성을 보여주기 위하여 제안된 시스템을 구현하였다. 실제 이용자에 의해 이용된 데이터를 실험에 적용하였으며, 해당 실험에서 추천은 실시간으로 이루어졌으며 추천결과에 있어서는 적절한 정확성을 보여주고 있다.

챗봇 기반의 개인화 패션 추천 서비스 향상을 위한 사용자-제품 속성 제안 (Proposal for User-Product Attributes to Enhance Chatbot-Based Personalized Fashion Recommendation Service)

  • 안효선;김성훈;최예림
    • 패션비즈니스
    • /
    • 제27권3호
    • /
    • pp.50-62
    • /
    • 2023
  • The e-commerce fashion market has experienced a remarkable growth, leading to an overwhelming availability of shared information and numerous choices for users. In light of this, chatbots have emerged as a promising technological solution to enhance personalized services in this context. This study aimed to develop user-product attributes for a chatbot-based personalized fashion recommendation service using big data text mining techniques. To accomplish this, over one million consumer reviews from Coupang, an e-commerce platform, were collected and analyzed using frequency analyses to identify the upper-level attributes of users and products. Attribute terms were then assigned to each user-product attribute, including user body shape (body proportion, BMI), user needs (functional, expressive, aesthetic), user TPO (time, place, occasion), product design elements (fit, color, material, detail), product size (label, measurement), and product care (laundry, maintenance). The classification of user-product attributes was found to be applicable to the knowledge graph of the Conversational Path Reasoning model. A testing environment was established to evaluate the usefulness of attributes based on real e-commerce users and purchased product information. This study is significant in proposing a new research methodology in the field of Fashion Informatics for constructing the knowledge base of a chatbot based on text mining analysis. The proposed research methodology is expected to enhance fashion technology and improve personalized fashion recommendation service and user experience with a chatbot in the e-commerce market.

재생 정보 기반 우연성 지향적 음악 추천에 관한 연구 (A Study on Serendipity-Oriented Music Recommendation Based on Play Information)

  • 하태현;이상원
    • 대한산업공학회지
    • /
    • 제41권2호
    • /
    • pp.128-136
    • /
    • 2015
  • With the recent interests with culture technologies, many studies for recommendation systems have been done. In this vein, various music recommendation systems have been developed. However, they have often focused on the technical aspects such as feature extraction and similarity comparison, and have not sufficiently addressed them in user-centered perspectives. For users' high satisfaction with recommended music items, it is necessary to study how the items are connected to the users' actual desires. For this, our study proposes a novel music recommendation method based on serendipity, which means the freshness users feel for their familiar items. The serendipity is measured through the comparison of users' past and recent listening tendencies. We utilize neural networks to apply these tendencies to the recommendation process and to extract the features of music items as MFCCs (Mel-frequency cepstral coefficients). In that the recommendation method is developed based on the characteristics of user behaviors, it is expected that user satisfaction for the recommended items can be actually increased.