• Title/Summary/Keyword: User classification

Search Result 839, Processing Time 0.024 seconds

User Interface Application for Cancer Classification using Histopathology Images

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2021
  • User interface for cancer classification system is a software application with clinician's friendly tools and functions to diagnose cancer from pathology images. Pathology evolved from manual diagnosis to computer-aided diagnosis with the help of Artificial Intelligence tools and algorithms. In this paper, we explained each block of the project life cycle for the implementation of automated breast cancer classification software using AI and machine learning algorithms to classify normal and invasive breast histology images. The system was designed to help the pathologists in an automatic and efficient diagnosis of breast cancer. To design the classification model, Hematoxylin and Eosin (H&E) stained breast histology images were obtained from the ICIAR Breast Cancer challenge. These images are stain normalized to minimize the error that can occur during model training due to pathological stains. The normalized dataset was fed into the ResNet-34 for the classification of normal and invasive breast cancer images. ResNet-34 gave 94% accuracy, 93% F Score, 95% of model Recall, and 91% precision.

Functions and Characteristics of Public Library Theme Collection: Focusing on the User-centered Classification Perspective (공공도서관 테마 컬렉션의 기능과 특성 - 이용자 중심 분류의 관점에서 -)

  • Baek, Ji-Won
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.52 no.4
    • /
    • pp.51-69
    • /
    • 2018
  • The purpose of this study is to analyze the potential use of the theme collection as a new classification method that reflects the interest of users in terms of classification and categorization. For this purpose, the background of the theme collection was identified based on the discussion of the library resource organization and the introduction of the curation service of bookstore. In addition, based on case analysis, which is building the theme collection, concrete concepts and characteristics of theme collection are derived. Based on the above discussion, the classification and categorization characteristics of public library themes collections were analyzed, and the characteristics and functions as a classification were compared with other categories relatively. Finally, the utility and applicability of the theme collection is presented and it is based on the discussions about the user-centered classification system design of the library in the future.

Designing an expert system for library classification (문헌분류 전문가시스팀의 설계에 대한 연구)

  • 김정현
    • Journal of Korean Library and Information Science Society
    • /
    • v.21
    • /
    • pp.459-483
    • /
    • 1994
  • The purpose of the study is to design and implement a prototype expert system for library classification in the literature field of the DDC 20. The system was largely consisted of a knowledge base, an inference engine, a knowledge acquisition facility, an explanation facility and an user interface facility. The knowledge base was represented by inference rules and frames. The name file for authors and titles was designed separately. The forward chaining technique was chosen for the inference engine and the menu-driven dialog technique was also taken for the user interface. The conclusions of the study can be summarized as follows: 1) The difficulty of document classification work is due to the complex and stringent classification rules. Such problems can be considerably alleviated by using the present system. 2) Even the novice with a knowledge about the DDC 20 can easily access the system. And also librarian other than the professional classifier can easily be accustomed to the classification work. 3) The system can be used as an online classification scheme. 4) By adding any local language other than English or Hangeul on the menu screen, the language problem relating classification can be overcome. 5) The system can be employed as the intensification tool for the education of classification as well as library automation.

  • PDF

A Model-based Collaborative Filtering Through Regularized Discriminant Analysis Using Market Basket Data

  • Lee, Jong-Seok;Jun, Chi-Hyuck;Lee, Jae-Wook;Kim, Soo-Young
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-85
    • /
    • 2006
  • Collaborative filtering, among other recommender systems, has been known as the most successful recommendation technique. However, it requires the user-item rating data, which may not be easily available. As an alternative, some collaborative filtering algorithms have been developed recently by utilizing the market basket data in the form of the binary user-item matrix. Viewing the recommendation scheme as a two-class classification problem, we proposed a new collaborative filtering scheme using a regularized discriminant analysis applied to the binary user-item data. The proposed discriminant model was built in terms of the major principal components and was used for predicting the probability of purchasing a particular item by an active user. The proposed scheme was illustrated with two modified real data sets and its performance was compared with the existing user-based approach in terms of the recommendation precision.

A Deep Learning Model for Predicting User Personality Using Social Media Profile Images

  • Kanchana, T.S.;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.265-271
    • /
    • 2022
  • Social media is a form of communication based on the internet to share information through content and images. Their choice of profile images and type of image they post can be closely connected to their personality. The user posted images are designated as personality traits. The objective of this study is to predict five factor model personality dimensions from profile images by using deep learning and neural networks. Developed a deep learning framework-based neural network for personality prediction. The personality types of the Big Five Factor model can be quantified from user profile images. To measure the effectiveness, proposed two models using convolution Neural Networks to classify each personality of the user. Done performance analysis among two different models for efficiently predict personality traits from profile image. It was found that VGG-69 CNN models are best performing models for producing the classification accuracy of 91% to predict user personality traits.

Web-based Image Retrieval and Classification System using Sketch Query (스케치 질의를 통한 웹기반 영상 검색과 분류 시스템)

  • 이상봉;고병철;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.703-712
    • /
    • 2003
  • With the explosive growth n the numbers and sizes of imaging technologies, Content-Based Image Retrieval (CBIR) has been attacked the interests of researchers in the fields of digital libraries, image processing, and database systems. In general, in the case of query-by-image, in user has to select an image from database to query, even though it is not his completely desired one. However, since query-by-sketch approach draws a query shape according to the user´s desire it can provide more high-level searching interface to the user compared to the query-b-image. As a result, query-by-sketch has been widely used. In this paper, we propose a Java-based image retrieval system that consists of sketch query and image classification. We use two features such as color histogram and Haar wavelets coefficients to search similar images. Then the Leave-One-Out method is used to classify database images. The categories of classification are photo & painting, city & nature, and sub-classification of nature image. By using the sketch query and image classification, w can offer convenient image retrieval interface to user and we can also reduce the searching time.

Development of Feature-based Classification Software for High Resolution Satellite Imager

  • Jeong, Soo;Kim, Kyung-Ok;Jeong, Sang-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1111-1113
    • /
    • 2003
  • In this paper, we investigated a method for feature - based classification to develop software which is suitable to the classification of high resolution satellite imagery . So, we developed related algorithm and designed user interfaces of convenience, considering various elements require for the feature - based classification. The software was tested with eCognition software which is unique commercial software for feature - based classification.

  • PDF

Construction of Hierarchical Classification of User Tags using WordNet-based Formal Concept Analysis (WordNet기반의 형식개념분석기법을 이용한 사용자태그 분류체계의 구축)

  • Hwang, Suk-Hyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.149-161
    • /
    • 2013
  • In this paper, we propose a novel approach to construction of classification hierarchies for user tags of folksonomies, using WordNet-based Formal Concept Analysis tool, called TagLighter, which is developed on this research. Finally, to give evidence of the usefulness of this approach in practice, we describe some experiments on user tag data of Bibsonomy.org site. The classification hierarchies of user tags constructed by our approach allow us to gain a better and further understanding and insight in tagged data during information retrieval and data analysis on the folksonomy-based systems. We expect that the proposed approach can be used in the fields of web data mining for folksonomy-based web services, social networking systems and semantic web applications.

A study on Classification of Insider threat using Markov Chain Model

  • Kim, Dong-Wook;Hong, Sung-Sam;Han, Myung-Mook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1887-1898
    • /
    • 2018
  • In this paper, a method to classify insider threat activity is introduced. The internal threats help detecting anomalous activity in the procedure performed by the user in an organization. When an anomalous value deviating from the overall behavior is displayed, we consider it as an inside threat for classification as an inside intimidator. To solve the situation, Markov Chain Model is employed. The Markov Chain Model shows the next state value through an arbitrary variable affected by the previous event. Similarly, the current activity can also be predicted based on the previous activity for the insider threat activity. A method was studied where the change items for such state are defined by a transition probability, and classified as detection of anomaly of the inside threat through values for a probability variable. We use the properties of the Markov chains to list the behavior of the user over time and to classify which state they belong to. Sequential data sets were generated according to the influence of n occurrences of Markov attribute and classified by machine learning algorithm. In the experiment, only 15% of the Cert: insider threat dataset was applied, and the result was 97% accuracy except for NaiveBayes. As a result of our research, it was confirmed that the Markov Chain Model can classify insider threats and can be fully utilized for user behavior classification.

Automatic Music-Story Video Generation Using Music Files and Photos in Automobile Multimedia System (자동차 멀티미디어 시스템에서의 사진과 음악을 이용한 음악스토리 비디오 자동생성 기술)

  • Kim, Hyoung-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.80-86
    • /
    • 2010
  • This paper presents automated music story video generation technique as one of entertainment features that is equipped in multimedia system of the vehicle. The automated music story video generation is a system that automatically creates stories to accompany musics with photos stored in user's mobile phone by connecting user's mobile phone with multimedia systems in vehicles. Users watch the generated music story video at the same time. while they hear the music according to mood. The performance of the automated music story video generation is measured by accuracies of music classification, photo classification, and text-keyword extraction, and results of user's MOS-test.