• Title/Summary/Keyword: User arm motion

Search Result 31, Processing Time 0.025 seconds

Leap Motion Framework for Juggling Motion According to User Motion in Virtual Environment

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.51-57
    • /
    • 2021
  • In this paper, we propose a new framework that calculates the user's hand motions using a Leap Motion device, and uses this to practice and analyze arm muscles as well as juggling motions. The proposed method can map the movement of the ball in a virtual environment according to the user's hand motions in real time, and analyze the amount of exercise by visualizing the relaxation and contraction of the muscles. The proposed framework consists of three main parts : 1) It tracks the user's hand position with the Leap Motion device. 2) As with juggling, the action pattern of the user throwing the ball is defined as an event. 3) We propose a parabola-based particle method to map the movement of a juggling shape to a ball based on the user's hand position. As a result, using the our framework, it is possible to play a juggling game in real-time.

Development of Intelligent Bed Robot System

  • Oh, Chang-Mok;Seo, Kap-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1535-1538
    • /
    • 2004
  • In this paper, an Intelligent Bed Robot System (IBRS) is proposed, that is a special bed equipped with robot manipulator. To assist a patient using IBRS, pose and motion estimation process is fundamental. It is designed to help the elderly and the disabled for their independent life in bed without other assistants. For this purpose, we use the pressure sensor distributed mattress for detecting the change of motion on the bed. Using that data, we control the robot arm to move to the appropriate position and serve to the user. In addition, we can estimate the user's intention based on the change of pressure and use those data to control the robot arm guide.

  • PDF

Development of Outdoor Jacket Design using Energy Harvesting System by Arm Swing Motion during Walking (보행 시 팔의 교차 운동을 이용한 에너지 하베스팅 재킷 디자인 개발)

  • Lee, Hyewon;Lee, Minsun;Suh, Sung Eun;Roh, Jung-Sim
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.300-307
    • /
    • 2019
  • This study develops a user centered outdoor jacket capable of energy harvesting based on consumer needs. Jackets are designed for typical outdoor activities such as hiking, trekking, and climbing, integrated with an energy harvesting module that can generate electric power from arm swing in outdoor and daily life walking. Textile based energy generators developed by the previous research of Lee & Roh (2018) were used. A prototype was created based on the arm swing motion experiment for location options and energy harvesting system functions, the simulation by the design sketch, and evaluation of the wearing test by experts. In-depth interviews were later conducted for the prototype with 10 outdoor experts to derive the optimal location of an energy harvesting system in three ways, and the prototype was revised to 5 styles that reflected reviews by experts on function and appearance. Research indicated that the energy harvesting jacket design signifies a user-centered design based on expert interviews and usability evaluation as well as previous research on energy generation and storage device. The jacket is convenient because it combines an energy generator in an optimal position to maximize energy generation with a storage and charging device that can be inserted into various position options for accessibility.

Arm Orientation Estimation Method with Multiple Devices for NUI/NUX

  • Sung, Yunsick;Choi, Ryong;Jeong, Young-Sik
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.980-988
    • /
    • 2018
  • Motion estimation is a key Natural User Interface/Natural User Experience (NUI/NUX) technology to utilize motions as commands. HTC VIVE is an excellent device for estimating motions but only considers the positions of hands, not the orientations of arms. Even if the positions of the hands are the same, the meaning of motions can differ according to the orientations of the arms. Therefore, when the positions of arms are measured and utilized, their orientations should be estimated as well. This paper proposes a method for estimating the arm orientations based on the Bayesian probability of the hand positions measured in advance. In experiments, the proposed method was used to measure the hand positions with HTC VIVE. The results showed that the proposed method estimated orientations with an error rate of about 19%, but the possibility of estimating the orientation of any body part without additional devices was demonstrated.

Leap-Motion Based Tracking Framework for Practice and Analysis of User's Arm Muscle (확장현실에서 사용자의 팔 근육 연습 및 분석을 위한 립모션 기반 추적 프레임워크)

  • Park, Seonga;Park, Soyeon;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.469-472
    • /
    • 2020
  • 본 논문에서는 립모션 디바이스를 이용하여 손의 움직임을 계산하고 이로부터 저글링 운동 동작뿐 만 아니라 이것을 이용한 팔 근육을 연습할 수 있는 새로운 프레임워크를 제안한다. 제안된 방법은 실시간으로 동작하기 때문에 사용자의 동작에 맞춰진 분석을 할 수 있다. 본 논문의 프레임워크는 크게 세 부분으로 나누어진다. 우선, 1) 사용자가 공을 튕기는 이벤트 트리거를 손목 움직임으로부터 정의한 뒤, 2) 사용자의 손 위치를 기준으로 저글링 형태의 움직임을 공에 매핑시키기 위한 포물선 기반 입자 기법을 제안한다. 마지막으로, 3) 손목의 굽힘을 기반으로 근육의 활동 양을 시각화할 수 있는 기법을 제안한다. 결과적으로 본 논문의 프레임워크를 이용하면 실시간 저글링 게임을 할 수 있을 뿐만 아니라 사용자의 팔 근육 움직임을 실시간으로 분석할 수 있다.

  • PDF

Multiple Dimension User Motion Detection System base on Wireless Sensors (무선센서 기반 다차원 사용자 움직임 탐지 시스템)

  • Kim, Jeong-Rae;Jeong, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.700-712
    • /
    • 2011
  • Due to recently advanced electrical devices, human can access computer network regardless of working location or time restriction. However, currently widely used mouse, joystick, and trackball input system are not easy to carry and they bound user hands exclusively within working space. Those make user inconvenient in Ubiquitous environments.. In this paper, we propose multiple dimension human motion detection system based on wireless sensor networks. It is a portable input device and provides easy installation process and unbinds user hands during input processing stages. Our implemented system is comprised of three components. One is input unit that senses user motions and transmits collected data to receiver. Second is receiver that conveys the received data to application, which runs on server computer. Third is application that performs command operations according to received data. Experiments shows that proposed system accurately detect the characteristics of user arm motions and fully support corresponding input requests.

An algorithm for real-time control of a 3D avatar by symmetry-formed motions (대칭형 자유동작에 의한 3D 아바타 실시간 제어 알고리즘)

  • Chang, Hee-Dong
    • Journal of Korea Game Society
    • /
    • v.3 no.2
    • /
    • pp.24-29
    • /
    • 2003
  • The market of digital avatar with internet and digital technology is increasing rapidly. The users want to express any free-formed motion of their avatars in the cyber space. The user s motion capturing method as the avatar's motion can express any free-formed motion of the avatar in real-time but the methods are expensive and inconvenient. In this paper, we proposed a new method of expressing any free-formed motion of the avatar in real-time. The proposed method is an algorithm for real-time control of a 3D avatar in symmetry-formed free motion. Specially, the algorithm aims at the motion control of a 3D avatar for online dancing games. The proposed algorithm uses the skeleton character model and controls any one of two hands of the character model by a joystick with two sticks. In the symmetry-formed motion, the position and orientation of one hand can determine the position and orientation of the other hand. And the position and orientation of a hand as an end-effector can determine the pose of the arm by Inverse Kinematics. So the algorithm can control the symmetry-formed free motions of two arms by one joystick with two sticks. In the dance game, the algorithm controls the arm motion by the joystick and the other motion by the motion captured DB.

  • PDF

Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.

Design and Implementation of a Real-time Region Pointing System using Arm-Pointing Gesture Interface in a 3D Environment

  • Han, Yun-Sang;Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.290-293
    • /
    • 2009
  • In this paper, we propose a method to estimate pointing region in real-world from images of cameras. In general, arm-pointing gesture encodes a direction which extends from user's fingertip to target point. In the proposed work, we assume that the pointing ray can be approximated to a straight line which passes through user's face and fingertip. Therefore, the proposed method extracts two end points for the estimation of pointing direction; one from the user's face and another from the user's fingertip region. Then, the pointing direction and its target region are estimated based on the 2D-3D projective mapping between camera images and real-world scene. In order to demonstrate an application of the proposed method, we constructed an ICGS (interactive cinema guiding system) which employs two CCD cameras and a monitor. The accuracy and robustness of the proposed method are also verified on the experimental results of several real video sequences.

  • PDF