Korean homenetwork industry is now faced with problems like low profitability and unclear commercialilzation. In particular, low awareness of homenetwork usefulness is one of the main reasons why homenetwork industry is not developed. Therefore, this study tried to find what kinds of characteristics of homenetwork affected the value of apartment and how. we conducted a survey of residents of apartment with homenetwork installed in it. Surveyed data was analyzed based on the model of extended Technology Acceptance Model(TAM) including perceived enjoyment and perceived trust as new factors. The research result showed that all factors involved in suggested model had positive effects on the behavioral intention of using homenetwork and the value of apartment. Most importantly, homenetwork user's behavioral intention increased perceived housing value of the apartment. The research result can be used in explaining the advantage of homenetwork to the residence of apartment as well as in designing the homenwtwork install of apartment.
Journal of Information Technology Applications and Management
/
v.27
no.6
/
pp.197-224
/
2020
Mobile games have become one of the most important driving forces of the game industry. We focus on the continuous intention to use Chinese mobile games from the perspective of experiential marketing and network externalities. We integrate user experience, network externalities and flow theory into expectation confirmation model and explore the influencing factors of continuous usage intention of Chinese mobile game and propose a research model. Game experience, service experience, perceived enjoyment, social interaction, challenge, perceived number of users and perceived number of peers were employed as independent variables, while flow, perceived value and satisfaction as mediating variables and continuous intention as the dependent variable. After surveying 426 samples, the model is tested with structural equation model. The results reveal that perceived enjoyment significantly positively influences perceived value, flow, satisfaction, and continuous intention. The greater the enjoyment of the game, the greater the satisfaction of the game and the greater the willingness to use it continuously. Game experience has a significant direct effect on continuous intention, which indicates that a better game experience can retain more users. Service experience and perceive number of peers positively influence satisfaction. Another finding is that social interaction and perceived number of users positively influence perceived value and flow, which indicate that social attributes are critical roles for retaining users. Game challenge also positively influences flow. The proper level of challenge is more likely to cause users to enter the state of flow. Flow indirectly influences continuous usage intention through the satisfaction of the game, which indicates that satisfaction is driven by flow experience and further retaining users. Empirical results implied that mobile game companies need to focus on improving user experience, expectation satisfaction and extending network externalities to improve the continuous intention of using mobile game.
Purpose: As mobile devices are commonly used and contact-free services are widespread due to the COVID-19 pandemic in the recent distribution environment, this study suggests retail strategies for consumers using high-speed railways. To this end, we analyzed how consumer perception on technologies necessary for use of mobile apps is related to the attitude that drives consumers to continue using the app services. Research design, data and methodology: Based on the extended unified theory of technology acceptance and use of technology model by Venkatesh, Morris, Davis and Davis (2003), we added variables proposed by existing theories that studied the technology acceptance model from multiple perspectives and empirically analyzed the relationship between user satisfaction and use intention with structural equation modeling. Results: As expected, factors necessary for the use of app services such as performance expectancy, social influence, price value, facilitating conditions, security, and aesthetics had positive effects on user satisfaction, whereas the effect of effort expectancy on user satisfaction was rejected. And user satisfaction was found to have a significant effect on intention to use. Conclusions: The results provide implications that strategic retail management of the above factors can motivate passengers to continuously use high-speed railways.
In this study, based on previous research on personal broadcasting, we indirectly measured content quality, YouTuber attributes, user satisfaction, and behavioral intention, which are latent variables that cannot be directly measured, as measurement variables, and then measured theoretically between the latent variables. In order to analyze the causal relationship, we used a structural equation model to determine to what extent the content quality of the YouTube mukbang channel and the YouTuber's attributes influence behavioral intentions such as purchase, recommendation, and continued use according to viewers' satisfaction with use. We intend to analyze and verify the relationship between related variables. The research results are as follows. First, the value, relevance, timeliness, completeness, and data quantity of content quality were found to have no significant impact on user satisfaction. Second, the trustworthiness, expertise, attractiveness, and intimacy of YouTuber attributes were found to have a significant impact on user satisfaction, but the similarity of YouTuber attributes did not have a significant impact on usage. Third, user satisfaction was found to have a significant impact on behavioral intentions and purchase intentions. However, user satisfaction was not found to have a direct significant impact on recommendation intentions or continued usage intentions.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.4
/
pp.2060-2077
/
2019
Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.
Journal of the Korean Society of Clothing and Textiles
/
v.42
no.1
/
pp.183-194
/
2018
This study investigated the characteristics of Omni Channel and examined the influence of them on consumers' perceived functional value and emotional value as well as the effect of perceived functional value and emotional value on user's intention of use through Omni Channel. To verify the research model, the questionnaire survey was conducted on 20's to 40's men and women residing in Seoul and the metropolitan area by convenience sampling. The number of copies used for data analysis was 696. To verify the research model, factor analysis, reliability analysis, and structural equation model analysis were performed using AMOS 20.0. First, Omni Channel characteristics consisted of four factors: instant connectivity, location-based provability, interactivity, and entertainment. Second, the instant connectivity, location-based provability and entertainment positively influenced functional value and emotional value; however, the interactivity was significant only to the emotional value. Third, consumers' perceived value of Omni Channel characteristics had a significant effect on attitude. Fourth, the more favorable the attitude toward Omni Channel is higher for the intention to use Omni Channel.
The purpose of this research was to develop an integrated interface for the usability test of systems or products in the design process. It is capable of automatically creating GOMS models which can predict human task performances. It can generate GOMS models to be interacted with the prototype interfaces. It can also effectively manage various design information and various usability test results to be implemented into the new product and/or system design. Thus we can perform usability test for products or system prototypes more effectively and also reduce time and effort required for this test. For usability tests, we established an integrated interface based on GOMS model by the LabVIEW program. We constructed the system that the linkage to GOMS model is available. Using this integrated interface, the menu structure of mobile phone can be constructed easily. User can design a depth and a breath that he want. The size of button and the label of the button is changable. The path to the goal can be defined by the user. Using a designed menu structure, the experiment could be performed. The results of GOMS model and the actual time are presented. Besides, values of operators of GOMS model can be defined as the value that user wants. Using the integrated interface that we developed, the optimal menu structure deducted. The menu structure that user wants can be established easily. The optimal layout and button size can be decided by comparison of numerous menu structures. User can choose the method of usability test among GOMS model and empirical data. Using this integrated interface, the time and costs can be saved and the optimal menu structure can be found easily.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.26
no.4
/
pp.105-121
/
2015
PDA model is new collection development method not only corresponding user's demand, but also expensing acquisition budget effectively. In the PDA model, when the trigger that indicates user's demand reaches up to treshold, e-book is automatically purchased without librarian's interrogation. This study examines concept, basic principles, and current condition of operation about PDA and finds a way that could applicate to Korean university library foreign E-book consortium. Current model of university library e-book acquisition pursuit reduction of budget and utility value, but the selected collection is not based on user's demand. Therefore, it could be considerable to apply PDA or evidence based purchase model to foreign e-book acquisition consortium.
Recently, government agencies are actively adopting the platform model as a means of public policy. However, existing studies on the public platform are minimal and have focused on user experiences or the possibility of public usage of the platform model. Now the research concerning building governance structure and utilizing network effects of the platform after adopting the platform model in the public sector is keenly required. This study intended to ignite academic dialogue on the governance of public platforms in the context of digital transformation. This study focused on a case of the 'Special delivery,' a public delivery app established by Gyeonggi-do. In order to analyze the characteristics of the public platform and its governance structure, data were collected from press releases, policy reports, and news articles. Data was analyzed using the frame of Hagui's platform design factors and Ansell & Gash's collaborative governance model. The results of the public platform analyses showed 1) incompleteness in the value trade-off accounting, which was designed for platform business based on general cost-benefit analysis, and 2) a closed governance structure that limits direct participation of diverse user groups(i.e., service provider, customer) in order to enhance providers' utility by preventing customers' excessive online activities. The results of this study provided theoretical and policy implications regarding designing the strategy for accounting for value trade-offs and functioning governance structure for public platforms.
Demonstration-based learning has the advantage that a user can easily teach his/her robot new task knowledge just by demonstrating directly how to perform the task. However, many previous demonstration-based learning techniques used a kind of attribute-value vector model to represent their state spaces and policies. Due to the limitation of this model, they suffered from both low efficiency of the learning process and low reusability of the learned policy. In this paper, we present a new demonstration-based learning method, in which the relational model is adopted in place of the attribute-value model. Applying the relational instance-based learning to the training examples extracted from the records of the user demonstrations, the method derives a relational instance-based policy which can be easily utilized for other similar tasks in the same domain. A relational policy maps a context, represented as a pair of (state, goal), to a corresponding action to be executed. In this paper, we give a detail explanation of our demonstration-based relational policy learning method, and then analyze the effectiveness of our learning method through some experiments using a robot simulator.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.