• 제목/요약/키워드: User Scheduling

Search Result 388, Processing Time 0.021 seconds

Performance of Two-User Two-Way Amplify-and-Forward Relaying Systems with Scheduling

  • Fang, Zhaoxi;Li, Guosheng;Li, Jun
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.689-694
    • /
    • 2011
  • In this paper, we study scheduling schemes for two-user two-way wireless relaying systems. Two transmission modes are considered: point-to-point direct transmission and two-way amplify-and-forward relaying. An optimal scheduling scheme that opportunistically selects the best transmission mode for each user is proposed to minimize the sum bit error rate (BER). The performance lower bound of the optimal scheduling scheme is analyzed, and closed-form expression of the lower-bound BER is derived. However, for optimal scheduling, the scheduler requires the knowledge of channel state information (CSI) of all links. To reduce the feedback information of CSI, we also propose a suboptimal scheduling scheme that selects the transmission mode using only the CSI of two direct links. Simulation results show that there are 4 dB to 8 dB gains for the proposed optimal and suboptimal schemes over the fixed direct transmission and fixed two-way relayed transmission scheme. The performance gap between the optimal and suboptimal scheduling schemes is small, which implies a good trade-off between implementation complexity and system performance.

On the Multiuser Diversity in SIMO Interfering Multiple Access Channels: Distributed User Scheduling Framework

  • Shin, Won-Yong;Park, Dohyung;Jung, Bang Chul
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • Due to the difficulty of coordination in the cellular uplink, it is a practical challenge how to achieve the optimal throughput scaling with distributed scheduling. In this paper, we propose a distributed and opportunistic user scheduling (DOUS) that achieves the optimal throughput scaling in a single-input multiple-output interfering multiple-access channel, i.e., a multi-cell uplink network, with M antennas at each base station (BS) and N users in a cell. In a distributed fashion, each BS adopts M random receive beamforming vectors and then selects M users such that both sufficiently large desired signal power and sufficiently small generating interference are guaranteed. As a main result, it is proved that full multiuser diversity gain can be achieved in each cell when a sufficiently large number of users exist. Numerical evaluation confirms that in a practical setting of the multi-cell network, the proposed DOUS outperforms the existing distributed user scheduling algorithms in terms of sum-rate.

A Novel Resource Scheduling Scheme for CoMP Systems

  • Zhou, Wen'an;Liu, Jianlong;Zhang, Yiyu;Yang, Chengyi;Yang, Xuhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.650-669
    • /
    • 2017
  • Coordinated multiple points transmission and reception (CoMP) technology is used to mitigate the inter-cell interference, and increase cell average user normalized throughput and cell edge user normalized throughput. There are two kinds of radio resource schedule strategies in LTE-A/5G CoMP system, and they are called centralized scheduling strategy and distributed scheduling strategy. The regional centralized scheduling cannot solve interference of inter-region, and the distributed scheduling leads to worse efficiency in the utilize of resources. In this paper, a novel distributed scheduling scheme named 9-Cell alternate authorization (9-CAA) is proposed. In our scheme, time-domain resources are divided orthogonally by coloring theory for inter-region cooperation in 9-Cell scenario [6]. Then, we provide a formula based on 0-1 integer programming to get chromatic number in 9-CAA. Moreover, a feasible optimal chromatic number search algorithm named CNS-9CAA is proposed. In addition, this scheme is expanded to 3-Cell scenario, and name it 3-Cell alternate authorization (3-CAA). At last, simulation results indicate that 9/3-CAA scheme exceed All CU CoMP, 9/3C CU CoMP and DLC resource scheduling scheme in cell average user normalized throughput. Especially, compared with the non-CoMP scheme as a benchmark, the 9-CAA and 3-CAA have improved the edge user normalized throughput by 17.2% and 13.0% respectively.

QoS-Guaranteed Multiuser Scheduling in MIMO Broadcast Channels

  • Lee, Seung-Hwan;Thompson, John S.;Kim, Jin-Up
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.481-488
    • /
    • 2009
  • This paper proposes a new multiuser scheduling algorithm that can simultaneously support a variety of different quality-of-service (QoS) user groups while satisfying fairness among users in the same QoS group in MIMO broadcast channels. Toward this goal, the proposed algorithm consists of two parts: a QoS-aware fair (QF) scheduling within a QoS group and an antenna trade-off scheme between different QoS groups. The proposed QF scheduling algorithm finds a user set from a certain QoS group which can satisfy the fairness among users in terms of throughput or delay. The antenna trade-off scheme can minimize the QoS violations of a higher priority user group by trading off the number of transmit antennas allocated to different QoS groups. Numerical results demonstrate that the proposed QF scheduling method satisfies different types of fairness among users and can adjust the degree of fairness among them. The antenna trade-off scheme combined with QF scheduling can improve the probability of QoS-guaranteed transmission when supporting different QoS groups.

Multi-agent Negotiation System for Class Scheduling

  • Gwon Cheol Hyeon;Park Seong Ju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.863-870
    • /
    • 2002
  • The current class scheduling has difficulties in reflecting students' preferences for the classes that they want to take and forecasting the demands of classes. Also, it is usually a repetitive and tedious work to allocate classes to limited time and cesourres Although many research studios in task allocation and meeting scheduling intend to solve similar problems, they have limitations to be directly applied to the class-scheduling problem. In this paper. a class scheduling system using multi agents-based negotiation is suggested. This system consists of student agents, professor agents and negotiation agents each agent arts in accordance with its respective human user's preference and performs the repetitive and tedious process instead of the user The suggested system utilizes negotiation cost concept to derive coalition in the agent's negotiation. The negotiation cost is derived from users' bidding prices on classes, where each biding price represents a user's preference on a selected class. The experiments were performed to verify the negotiation model in the scheduling system. The result of the experiment showed that it could produce a feasible scheduling solution minimizing the negotiation cost and reflecting the users' performance. The performance of the experiments was evaluated by a class success ratio.

  • PDF

Energy-Efficient Scheduling with Delay Constraints in Time-Varying Uplink Channels

  • Kwon, Ho-Joong;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.28-37
    • /
    • 2008
  • In this paper, we investigate the problem of minimizing the average transmission power of users while guaranteeing the average delay constraints in time-varying uplink channels. We design a scheduler that selects a user for transmission and determines the transmission rate of the selected user based on the channel and backlog information of users. Since it requires prohibitively high computation complexity to determine an optimal scheduler for multi-user systems, we propose a low-complexity scheduling scheme that can achieve near-optimal performance. In this scheme, we reduce the complexity by decomposing the multiuser problem into multiple individual user problems. We arrange the probability of selecting each user such that it can be determined only by the information of the corresponding user and then optimize the transmission rate of each user independently. We solve the user problem by using a dynamic programming approach and analyze the upper and lower bounds of average transmission power and average delay, respectively. In addition, we investigate the effects of the user selection algorithm on the performance for different channel models. We show that a channel-adaptive user selection algorithm can improve the energy efficiency under uncorrelated channels but the gain is obtainable only for loose delay requirements in the case of correlated channels. Based on this, we propose a user selection algorithm that adapts itself to both the channel condition and the backlog level, which turns out to be energy-efficient over wide range of delay requirement regardless of the channel model.

Joint User Scheduling and Power Control Considering Both Signal and Interference for Multi-Cell Networks (다중 셀 상향링크 네트워크에서 신호와 간섭을 동시에 고려하는 전력 제어 및 사용자 스케쥴링)

  • Cho, Moon-Je;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.477-483
    • /
    • 2016
  • In this paper, we propose a distributed user scheduling with interference-aware power control (IAPC) to maximize signal to generating interference plus noise ratio (SGINR) in uplink multi-cell networks. Assuming that the channel reciprocity time-division duplexing (TDD) system is used, the channel state information (CSI) can be obtained at each user from pilot signals from other BSs. In the proposed scheduling, to be specific, each user reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest SGINR among users. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms. It is worth noting that the proposed technique operates with distributed manner without information exchange among cells. Hence, it can be easily applied to the practical wireless systems like 3GPP LTE without significant modifications of the specification.

A User Scheduling with Interference-Aware Power Control for Multi-Cell MIMO Networks (다중안테나 다중셀 네트워크에서 간섭인지 기반 전력제어 기술을 이용한 사용자 스케쥴링)

  • Cho, Moon-Je;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1063-1070
    • /
    • 2015
  • In this paper, we propose a distributed user scheduling with transmit power control based on the amount of generating interference to other base stations (BSs) in multi-cell multi-input multi-output (MIMO) networks. Assuming that the time-division duplexing (TDD) system is used, the interference channel from users to other cell BSs is obtained at each user. In the proposed scheduling, each user first generates a transmit beamforming vector by using singular value decompositon (SVD) over MIMO channels and reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest effective channel gains among users, which reflects the adjusted power of users. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms.

Deep Learning Based User Scheduling For Multi-User and Multi-Antenna Networks (다중 사용자 다중 안테나 네트워크를 위한 심화 학습기반 사용자 스케쥴링)

  • Ban, Tae-Won;Lee, Woongsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.975-980
    • /
    • 2019
  • In this paper, we propose a deep learning-based scheduling scheme for user selection in multi-user multi-antenna networks which is considered one of key technologies for the next generation mobile communication systems. We obtained 90,000 data samples from the conventional optimal scheme to train the proposed neural network and verified the trained neural network to check if the trained neural network is over-fitted. Although the proposed neural network-based scheduling algorithm requires considerable complexity and time for training in the initial stage, it does not cause any extra complexity once it has been trained successfully. On the other hand, the conventional optimal scheme continuously requires the same complexity of computations for every scheduling. According to extensive computer-simulations, the proposed deep learning-based scheduling algorithm yields about 88~96% average sum-rates of the conventional scheme for SNRs lower than 10dB, while it can achieve optimal average sum-rates for SNRs higher than 10dB.

A Study on the Development of Generator Maintenance Scheduling Program Package (발전기 예방정비계획 전산화모형 개발에 관한 연구)

  • Won, Jong-Ryul;Yoon, Yong-Beum;Park, Si-Woo;Nam, Jae-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1374-1381
    • /
    • 1999
  • This paper describes development of a package for generator maintenance scheduling program with user-friendly interactive mode. Generator maintenance scheduling is to select desirable maintenance periods of generators in the given interval satisfying reliability or economic criteria. Window-based system for user-friendly mode and Oracle-based database system for efficient data management are established in our package. Reserve rate levelization and LOLP minimization are performed in calculation mode, which is composed of DLL programs. Many graphs and charts are illustrated for the user-analysis. Operation is carried out by day-based unit, not by week. The case study has been conducted with the data of practical KEPCO power system in 1999 and successfully demonstrated its effectiveness.

  • PDF