• 제목/요약/키워드: User Interest Information

검색결과 719건 처리시간 0.02초

A Deep Learning Approach for Identifying User Interest from Targeted Advertising

  • Kim, Wonkyung;Lee, Kukheon;Lee, Sangjin;Jeong, Doowon
    • Journal of Information Processing Systems
    • /
    • 제18권2호
    • /
    • pp.245-257
    • /
    • 2022
  • In the Internet of Things (IoT) era, the types of devices used by one user are becoming more diverse and the number of devices is also increasing. However, a forensic investigator is restricted to exploit or collect all the user's devices; there are legal issues (e.g., privacy, jurisdiction) and technical issues (e.g., computing resources, the increase in storage capacity). Therefore, in the digital forensics field, it has been a challenge to acquire information that remains on the devices that could not be collected, by analyzing the seized devices. In this study, we focus on the fact that multiple devices share data through account synchronization of the online platform. We propose a novel way of identifying the user's interest through analyzing the remnants of targeted advertising which is provided based on the visited websites or search terms of logged-in users. We introduce a detailed methodology to pick out the targeted advertising from cache data and infer the user's interest using deep learning. In this process, an improved learning model considering the unique characteristics of advertisement is implemented. The experimental result demonstrates that the proposed method can effectively identify the user interest even though only one device is examined.

User modeling based on fuzzy category and interest for web usage mining

  • Lee, Si-Hun;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.88-93
    • /
    • 2005
  • Web usage mining is a research field for searching potentially useful and valuable information from web log file. Web log file is a simple list of pages that users refer. Therefore, it is not easy to analyze user's current interest field from web log file. This paper presents web usage mining method for finding users' current interest based on fuzzy categories. We consider not only how many times a user visits pages but also when he visits. We describe a user's current interest with a fuzzy interest degree to categories. Based on fuzzy categories and fuzzy interest degrees, we also propose a method to cluster users according to their interests for user modeling. For user clustering, we define a category vector space. Experiments show that our method properly reflects the time factor of users' web visiting as well as the users' visit number.

A Study of user-centric service model and user satisfaction analysis for information service

  • Kim, Chang-Su;Jung, Hoe-Kyung
    • Journal of information and communication convergence engineering
    • /
    • 제7권2호
    • /
    • pp.92-97
    • /
    • 2009
  • Lately, influence of information rises and interest about satisfaction estimation of information providing service is risin. According to rapid change in information environment, information-providing service is being changed in various form, in which center development is made in relation to the effort for customer satisfaction intended to enhance user's satisfaction level through providing more convenient and higher service centered on information service user rather than information service provider. Organizations providing information service is also changing their service from traditional one centered on service provider to that for user's satisfaction and service quality, and evaluation of information service quality and measurement of user's satisfaction as the result of using information service are regarded important. In this respect, it is needed to measure user's satisfaction level for environmental factors of information service and analyze what kind of influence they have to enhance user's satisfaction level of information service. Also function and efficiency of information offer service are important. Therefore, interest for satisfaction survey to heighten contents satisfaction of information-providing service, service satisfaction, satisfaction of user of system satisfaction is increased. In this paper, we propose a model of the user satisfaction index for information-providing services and present the user satisfaction index is measured to the model. Also we this study suggest qualitative improvements of information-providing service required for change to user-centric information-providing service through measuring user satisfaction index of ITFIND system and schemes to improve information quality

학습알고리즘 기반의 하이브리드 개인화 추천시스템 개발에 관한 연구 (A Study on Development of Hybrid Personalization Recommendation System Based on Learing Algorithm)

  • 김용;문성빈
    • 한국문헌정보학회지
    • /
    • 제39권3호
    • /
    • pp.75-91
    • /
    • 2005
  • 인터넷의 발전과 성장은 웹상에서의 정보의 량에 있어서 폭발적인 성장을 가져 왔다. 이러한 웹상에서의 정보량의 증가는 정보이용자의 요구와 필요에 맞는 정보 제공을 위한 서비스로서 웹기반의 개인화서비스에 대한 요구를 더욱 더 강조하게 되었다. 개인화서비스는 정보이용자의 요구와 필요에 의해 현실화 될 수 있으며 이러한 정보이용자의 관심사와 정보요구는 지속적으로 또한 급격하게 변화되고 있다. 웹상의 수많은 정보로부터 정보이용자의 요구와 필요를 만족 시킬 수 있기 위하여 본 논고에서는 이용자의 관심과 요구를 표현하기 위하여 이용자 프로파일 정보를 이용하였으며 이러한 이용자의 프로파일 정보는 이용자의 요구와 흥미에 대한 변화를 반영하기 위하여 지속적으로 갱신하였다. 본고에서는 정보이용자의 정보요구와 흥미의 변화를 지속적으로 이용자프로파일에 반영하기 위한 방안으로서 학습알고리즘을 제안하였다. 정보이용자의 정보에 대한 피드백을 기반으로 이용자의 정보에 대한 흥미와 요구는 본 고에서 제안한 학습알고리즘을 통하여 지속적으로 갱신 되므로서 정보이용자에게 보다 정확한 정보를 제공할 수 있다고 할 수 있다. 이러한 학습알고리즘은 보다 개선된 하이브리드 정보추천시스템에 적용하였다.

사용자의 잠재적 흥미를 인식하기 위한 주시 모방 모델 기반의 지능형 정보 시스템 (Gaze Mirroring-based Intelligent Information System for Making User's Latent Interest)

  • 박혜선;히라야마 다카쯔쿠;마쯔야마 다카시
    • 지능정보연구
    • /
    • 제16권3호
    • /
    • pp.37-54
    • /
    • 2010
  • 정보의 수집, 기록, 처리, 저장을 하며 정보를 검색하고 제시해 주는 정보 시스템은 최근, 여러 방면에서 응용되어 인간의 여러 가지 활동을 지원하고 있다. 그런데, 현재의 정보 시스템은 일반적으로, 사용자의 명시적 제시에 대하여 시스템이 반응하고 정보를 제시하는 '반작용에 의한 소극적 모델(reactive model)'을 기반으로 하고 있다. 그러나 정보사회로 발전하기 위해서는 정보 시스템 자신이 자율적으로 인간의 행동이나 의도를 이해해, 거기에 기반을 두고 인간에게 지시나 정보 제공을 자발적으로 실시한다고 하는 '쌍방향의 동적 상호작용(mutual dynamic interaction)'이 필요하다. 따라서 본 논문에서는 정보시스템과 사용자의 '시선' 정보 기반의 쌍방향의 동적 상호작용을 통하여, 사용자의 '흥미' 라고 하는 심리적 상태를 추정하여, 보다 적절하고 효과적인 정보를 제공할 수 있는 주시 모방 모델 기반의 지능형 정보 시스템을 제안한다. 제안된 시스템은 의인 에이전트(avatar)를 이용하여 사용자의 주시 행동을 모방하는 것에 의해, 사용자와의 '공동 주의'를 실시하는 주시 모방(Gaze-Mirroring)이라는 방법을 도입하여, 시스템이 사용자의 잠재적인 흥미를 추정하고 추정된 결과에 따라 적절한 정보를 제시한다. 이와 같은 사용자의 시선정보를 이용한 주시 모방 모델 기반의 지능형 정보 시스템은 시스템의 적극적인 상호작용을 통한 새로운 상호작용 방법의 개발이 될 뿐만아니라, 사용자의 주시 정보를 통하여, 사용자의 잠재적 흥미를 표출함으로써, 사용자의 의도를 이해해, 사용자가 원하는 정보를 제시해 줄 수 있다.

A Dynamic Ontology-based Multi-Agent Context-Awareness User Profile Construction Method for Personalized Information Retrieval

  • Gao, Qian;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권4호
    • /
    • pp.270-276
    • /
    • 2012
  • With the increase in amount of data and information available on the web, there have been high demands on personalized information retrieval services to provide context-aware services for the web users. This paper proposes a novel dynamic multi-agent context-awareness user profile construction method based on ontology to incorporate concepts and properties to model the user profile. This method comprehensively considers the frequency and the specific of the concept in one document and its corresponding domain ontology to construct the user profile, based on which, a fuzzy c-means clustering method is adopted to cluster the user's interest domain, and a dynamic update policy is adopted to continuously consider the change of the users' interest. The simulation result shows that along with the gradual perfection of the our user profile, our proposed system is better than traditional semantic based retrieval system in terms of the Recall Ratio and Precision Ratio.

스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법 (A User Profile-based Filtering Method for Information Search in Smart TV Environment)

  • 신위살;오경진;조근식
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.97-117
    • /
    • 2012
  • 인터넷 사용자는 비디오를 보면서 소셜 네트워크 서비스를 이용하고 웹 검색을 하고, 비디오에 나타난 상품에 관심이 있을 경우 검색엔진을 통해 정보를 찾는다. 비디오와 사용자의 직접적인 상호작용을 위해 비디오 어노테이션에 대한 연구가 진행되었고, 스마트 TV 환경에서 어노테이션 된 비디오가 활용될 경우 사용자는 객체에 대한 링크를 통해 원하는 상품의 정보를 쉽게 확인할 수 있게 된다. 사용자가 상품에 대한 구매를 원할 경우 상품에 대한 정보검색 이외에 상품평이나 소셜 네트워크 친구의 의견을 통해 구매 결정을 한다. 소셜 네트워크로부터 발생되는 정보는 다른 정보에 비해 신뢰도가 높아 구매 결정에 큰 영향을 미친다. 하지만 현재 소셜 네트워크 서비스는 의견을 얻고자 할 경우 모든 소셜 네트워크 친구들에게 전달되고 많은 의견을 얻게 되어 이들로부터 유용한 정보를 파악하는 것은 쉽지 않다. 본 논문에서는 소셜 네트워크 사용자의 프로파일을 기반으로 상품에 대해 유용한 정보를 제공할 수 있는 친구를 규명하기 위한 필터링 방법을 제안한다. 사용자 프로파일은 페이스북의 사용자 정보와 페이스북 페이지의 'Like' 정보를 이용하여 구성된다. 프로파일의 상품 정보는 GoodRelations 온톨로지와 BestBuy 데이터를 이용하여 의미적으로 표현된다. 사용자가 비디오를 보면서 상품 정보를 얻고자 할 경우 어노테이션된 URI를 이용하여 정보가 전달된다. 시스템은 소셜 네트워크 친구들에 대한 사용자 프로파일과 BestBuy를 기반으로 어노테이션된 상품에 대한 의미적 유사도를 계산하고 유사도 값에 따라 순위가 결정한다. 결정된 순위는 유용한 정보를 제공할 수 있는 소셜 네트워크 상의 친구를 규명하는데 사용된다. 참가자의 동의하에 페이스북 정보를 활용하였고, 시스템에 의해 도출된 결과와 참가자 인터뷰를 통해 평가된 결과를 이용하여 타당성을 검증하였다. 비교 실험의 결과는 제안하는 시스템이 상품 구매결정을 하기 위해 유용한 정보를 획득할 수 있는 방법임을 증명한다.

소셜 라이프 로그를 이용한 개인화된 여행 경로 추천 (Personalized Travel Path Recommendations with Social Life Log)

  • ;임종태;복경수;유재수
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2017년도 춘계 종합학술대회 논문집
    • /
    • pp.453-454
    • /
    • 2017
  • The travellers using social media leave their location history in the form of trajectories. These trajectories can be bridged for acquiring information, required for future recommendation for the future travelers, who are new to that location, providing all sort of information. In this paper, we propose a personalized travel path recommendation scheme based on social life log. By taking advantage of two kinds of social media such as travelogue and community contributed photos, the proposed scheme can not only be personalized to user's travel interest but also be able to recommend a travel path rather than individual Points of Interest (POIs). It also maps both user's and routes' textual descriptions to the topical package space to get user topical package model and route topical package model (i.e., topical interest, cost, time and season).

  • PDF

PCRM: Increasing POI Recommendation Accuracy in Location-Based Social Networks

  • Liu, Lianggui;Li, Wei;Wang, Lingmin;Jia, Huiling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5344-5356
    • /
    • 2018
  • Nowadays with the help of Location-Based Social Networks (LBSNs), users of Point-of-Interest (POI) recommendation service in LBSNs are able to publish their geo-tagged information and physical locations in the form of sign-ups and share their experiences with friends on POI, which can help users to explore new areas and discover new points-of-interest, and promote advertisers to push mobile ads to target users. POI recommendation service in LBSNs is attracting more and more attention from all over the world. Due to the sparsity of users' activity history data set and the aggregation characteristics of sign-in area, conventional recommendation algorithms usually suffer from low accuracy. To address this problem, this paper proposes a new recommendation algorithm based on a novel Preference-Content-Region Model (PCRM). In this new algorithm, three kinds of information, that is, user's preferences, content of the Point-of-Interest and region of the user's activity are considered, helping users obtain ideal recommendation service everywhere. We demonstrate that our algorithm is more effective than existing algorithms through extensive experiments based on an open Eventbrite data set.

Personalized Agent Modeling by Modified Spreading Neural Network

  • Cho, Young-Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권2호
    • /
    • pp.215-221
    • /
    • 2003
  • Generally, we want to be searched the newest as well as some appropriate personalized information from the internet resources. However, it is a complex and repeated procedure to search some appropriate information. Moreover, because the user's interests are changed as time goes, the real time modeling of a user's interests should be necessary. In this paper, I propose PREA system that can search and filter documents that users are interested from the World Wide Web. And then it constructs the user's interest model by a modified spreading neural network. Based on this network, PREA can easily produce some queries to search web documents, and it ranks them. The conventional spreading neural network does not have a visualization function, so that the users could not know how to be configured his or her interest model by the network. To solve this problem, PREA gives a visualization function being shown how to be made his interest user model to many users.