• Title/Summary/Keyword: User Interest Information

Search Result 719, Processing Time 0.023 seconds

A Deep Learning Approach for Identifying User Interest from Targeted Advertising

  • Kim, Wonkyung;Lee, Kukheon;Lee, Sangjin;Jeong, Doowon
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.245-257
    • /
    • 2022
  • In the Internet of Things (IoT) era, the types of devices used by one user are becoming more diverse and the number of devices is also increasing. However, a forensic investigator is restricted to exploit or collect all the user's devices; there are legal issues (e.g., privacy, jurisdiction) and technical issues (e.g., computing resources, the increase in storage capacity). Therefore, in the digital forensics field, it has been a challenge to acquire information that remains on the devices that could not be collected, by analyzing the seized devices. In this study, we focus on the fact that multiple devices share data through account synchronization of the online platform. We propose a novel way of identifying the user's interest through analyzing the remnants of targeted advertising which is provided based on the visited websites or search terms of logged-in users. We introduce a detailed methodology to pick out the targeted advertising from cache data and infer the user's interest using deep learning. In this process, an improved learning model considering the unique characteristics of advertisement is implemented. The experimental result demonstrates that the proposed method can effectively identify the user interest even though only one device is examined.

User modeling based on fuzzy category and interest for web usage mining

  • Lee, Si-Hun;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.88-93
    • /
    • 2005
  • Web usage mining is a research field for searching potentially useful and valuable information from web log file. Web log file is a simple list of pages that users refer. Therefore, it is not easy to analyze user's current interest field from web log file. This paper presents web usage mining method for finding users' current interest based on fuzzy categories. We consider not only how many times a user visits pages but also when he visits. We describe a user's current interest with a fuzzy interest degree to categories. Based on fuzzy categories and fuzzy interest degrees, we also propose a method to cluster users according to their interests for user modeling. For user clustering, we define a category vector space. Experiments show that our method properly reflects the time factor of users' web visiting as well as the users' visit number.

A Study of user-centric service model and user satisfaction analysis for information service

  • Kim, Chang-Su;Jung, Hoe-Kyung
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.92-97
    • /
    • 2009
  • Lately, influence of information rises and interest about satisfaction estimation of information providing service is risin. According to rapid change in information environment, information-providing service is being changed in various form, in which center development is made in relation to the effort for customer satisfaction intended to enhance user's satisfaction level through providing more convenient and higher service centered on information service user rather than information service provider. Organizations providing information service is also changing their service from traditional one centered on service provider to that for user's satisfaction and service quality, and evaluation of information service quality and measurement of user's satisfaction as the result of using information service are regarded important. In this respect, it is needed to measure user's satisfaction level for environmental factors of information service and analyze what kind of influence they have to enhance user's satisfaction level of information service. Also function and efficiency of information offer service are important. Therefore, interest for satisfaction survey to heighten contents satisfaction of information-providing service, service satisfaction, satisfaction of user of system satisfaction is increased. In this paper, we propose a model of the user satisfaction index for information-providing services and present the user satisfaction index is measured to the model. Also we this study suggest qualitative improvements of information-providing service required for change to user-centric information-providing service through measuring user satisfaction index of ITFIND system and schemes to improve information quality

A Study on Development of Hybrid Personalization Recommendation System Based on Learing Algorithm (학습알고리즘 기반의 하이브리드 개인화 추천시스템 개발에 관한 연구)

  • Kim Yong;Moon Sung-Been
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.39 no.3
    • /
    • pp.75-91
    • /
    • 2005
  • The popularization of the internet has produced an explosion in amount of the information. The importance of web personalization is being more and more increased. The personalization is realized by learning user's interest. User's interest is changing continuously and rapidly. We use user's profile to represent user's interest. User's profile is updated to reflect the change of user's interest. In this paper we present an adaptive learning algorithm that can be used to reflect user's interest that is changing with time. We propose the User's profile model. With this profile user's interest is learned based on user's feedback. This approach has applied to develop hybrid recommendation system.

Gaze Mirroring-based Intelligent Information System for Making User's Latent Interest (사용자의 잠재적 흥미를 인식하기 위한 주시 모방 모델 기반의 지능형 정보 시스템)

  • Park, Hye-Sun;Hirayama, Takatsugu;Matsuyama, Takashi
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.37-54
    • /
    • 2010
  • The information system that preserves and presents information collections, records, processes, retrievals, is applied in various fields recently and is supporting man's many activities. Conventional information systems are based on the reactive interaction model. Such reactive systems respond to only specific instructions, i.e. the defined commands, from the user. To go beyond the reactive interaction, it is necessary that the interactive dynamic interaction based information system which understands human's action and intention autonomously and then provides sensible information adapted to the user. Therefore, we propose a Gaze Mirroring-based intelligent information system for making user's latent interest using the internal state estimation methods based on the interactive dynamic interaction. Then, the proposed Gaze Mirroring method is that an anthropomorphic agent(avatar) actively established the joint attention with the user by imitating user's eye-gaze behavior. We verify that the Gaze Mirroring can elicit the user's behavior reflecting the latent interestand contribute to improving the accuracy of interest estimation. We also have confidence that the Gaze Mirroring promotes the self-awareness of interest. Such a Gaze Mirroring-based intelligent information system also provides suitable information to user by making user's latent interest using the internal state estimation.

A Dynamic Ontology-based Multi-Agent Context-Awareness User Profile Construction Method for Personalized Information Retrieval

  • Gao, Qian;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.270-276
    • /
    • 2012
  • With the increase in amount of data and information available on the web, there have been high demands on personalized information retrieval services to provide context-aware services for the web users. This paper proposes a novel dynamic multi-agent context-awareness user profile construction method based on ontology to incorporate concepts and properties to model the user profile. This method comprehensively considers the frequency and the specific of the concept in one document and its corresponding domain ontology to construct the user profile, based on which, a fuzzy c-means clustering method is adopted to cluster the user's interest domain, and a dynamic update policy is adopted to continuously consider the change of the users' interest. The simulation result shows that along with the gradual perfection of the our user profile, our proposed system is better than traditional semantic based retrieval system in terms of the Recall Ratio and Precision Ratio.

A User Profile-based Filtering Method for Information Search in Smart TV Environment (스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법)

  • Sean, Visal;Oh, Kyeong-Jin;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.97-117
    • /
    • 2012
  • Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.

Personalized Travel Path Recommendations with Social Life Log (소셜 라이프 로그를 이용한 개인화된 여행 경로 추천)

  • Paul, Aniruddha;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jasesoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.453-454
    • /
    • 2017
  • The travellers using social media leave their location history in the form of trajectories. These trajectories can be bridged for acquiring information, required for future recommendation for the future travelers, who are new to that location, providing all sort of information. In this paper, we propose a personalized travel path recommendation scheme based on social life log. By taking advantage of two kinds of social media such as travelogue and community contributed photos, the proposed scheme can not only be personalized to user's travel interest but also be able to recommend a travel path rather than individual Points of Interest (POIs). It also maps both user's and routes' textual descriptions to the topical package space to get user topical package model and route topical package model (i.e., topical interest, cost, time and season).

  • PDF

PCRM: Increasing POI Recommendation Accuracy in Location-Based Social Networks

  • Liu, Lianggui;Li, Wei;Wang, Lingmin;Jia, Huiling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5344-5356
    • /
    • 2018
  • Nowadays with the help of Location-Based Social Networks (LBSNs), users of Point-of-Interest (POI) recommendation service in LBSNs are able to publish their geo-tagged information and physical locations in the form of sign-ups and share their experiences with friends on POI, which can help users to explore new areas and discover new points-of-interest, and promote advertisers to push mobile ads to target users. POI recommendation service in LBSNs is attracting more and more attention from all over the world. Due to the sparsity of users' activity history data set and the aggregation characteristics of sign-in area, conventional recommendation algorithms usually suffer from low accuracy. To address this problem, this paper proposes a new recommendation algorithm based on a novel Preference-Content-Region Model (PCRM). In this new algorithm, three kinds of information, that is, user's preferences, content of the Point-of-Interest and region of the user's activity are considered, helping users obtain ideal recommendation service everywhere. We demonstrate that our algorithm is more effective than existing algorithms through extensive experiments based on an open Eventbrite data set.

Personalized Agent Modeling by Modified Spreading Neural Network

  • Cho, Young-Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.215-221
    • /
    • 2003
  • Generally, we want to be searched the newest as well as some appropriate personalized information from the internet resources. However, it is a complex and repeated procedure to search some appropriate information. Moreover, because the user's interests are changed as time goes, the real time modeling of a user's interests should be necessary. In this paper, I propose PREA system that can search and filter documents that users are interested from the World Wide Web. And then it constructs the user's interest model by a modified spreading neural network. Based on this network, PREA can easily produce some queries to search web documents, and it ranks them. The conventional spreading neural network does not have a visualization function, so that the users could not know how to be configured his or her interest model by the network. To solve this problem, PREA gives a visualization function being shown how to be made his interest user model to many users.