• 제목/요약/키워드: User Environment

Search Result 5,415, Processing Time 0.04 seconds

Development of an AI Model to Determine the Relationship between Cerebrovascular Disease and the Work Environment as well as Analysis of Consistency with Expert Judgment (뇌심혈관 질환과 업무 환경의 연관성 판단을 위한 AI 모델의 개발 및 전문가 판단과의 일치도 분석)

  • Juyeon Oh;Ki-bong Yoo;Ick Hoon Jin;Byungyoon Yun;Juho Sim;Heejoo Park;Jongmin Lee;Jian Lee;Jin-Ha Yoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.3
    • /
    • pp.202-213
    • /
    • 2024
  • Introduction: Acknowledging the global issue of diseases potentially caused by overwork, this study aims to develop an AI model to help workers understand the connection between cerebrocardiovascular diseases and their work environment. Materials and methods: The model was trained using medical and legal expertise along with data from the 2021 occupational disease adjudication certificate by the Industrial Accident Compensation Insurance and Prevention Service. The Polyglot-ko-5.8B model, which is effective for processing Korean, was utilized. Model performance was evaluated through accuracy, precision, sensitivity, and F1-score metrics. Results: The model trained on a comprehensive dataset, including expert knowledge and actual case data, outperformed the others with respective accuracy, precision, sensitivity, and F1-scores of 0.91, 0.89, 0.84, and 0.87. However, it still had limitations in responding to certain scenarios. Discussion: The comprehensive model proved most effective in diagnosing work-related cerebrocardiovascular diseases, highlighting the significance of integrating actual case data in AI model development. Despite its efficacy, the model showed limitations in handling diverse cases and offering health management solutions. Conclusion: The study succeeded in creating an AI model to discern the link between work factors and cerebrocardiovascular diseases, showcasing the highest efficacy with the comprehensively trained model. Future enhancements towards a template-based approach and the development of a user-friendly chatbot webUI for workers are recommended to address the model's current limitations.

Enhancing Leadership Skills of Construction Students Through Conversational AI-Based Virtual Platform

  • Rahat HUSSAIN;Akeem PEDRO;Mehrtash SOLTANI;Si Van Tien TRAN;Syed Farhan Alam ZAIDI;Chansik PARK;Doyeop LEE
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1326-1327
    • /
    • 2024
  • The construction industry is renowned for its dynamic and intricate characteristics, which demand proficient leadership skills for successful project management. However, the existing training platforms within this sector often overlook the significance of soft skills in leadership development. These platforms primarily focus on safety, work processes, and technical modules, leaving a noticeable gap in preparing future leaders, especially students in the construction domain, for the complex challenges they will encounter in their professional careers. It is crucial to recognize that effective leadership in construction projects requires not only technical expertise but also the ability to communicate effectively, collaborate with diverse stakeholders, and navigate complex relationships. These soft skills are critical for managing teams, resolving conflicts, and driving successful project outcomes. In addition, the construction sector has been slow in adopting and harnessing the potential of advanced emerging technologies such as virtual reality, artificial intelligence, to enhance the soft skills of future leaders. Therefore, there is a need for a platform where students can practice complex situations and conversations in a safe and repeatable training environment. To address these challenges, this study proposes a pioneering approach by integrating conversational AI techniques using large language models (LLMs) within virtual worlds. Although LLMs like ChatGPT possess extensive knowledge across various domains, their responses may lack relevance in specific contexts. Prompt engineering techniques are utilized to ensure more accurate and effective responses, tailored to the specific requirements of the targeted users. This involves designing and refining the input prompts given to the language model to guide its response generation. By carefully crafting the prompts and providing context-specific instructions, the model can generate responses that are more relevant and aligned with the desired outcomes of the training program. The proposed system offers interactive engagement to students by simulating diverse construction site roles through conversational AI based agents. Students can face realistic challenges that test and enhance their soft skills in a practical context. They can engage in conversations with AI-based avatars representing different construction site roles, such as machine operators, laborers, and site managers. These avatars are equipped with AI capabilities to respond dynamically to user interactions, allowing students to practice their communication and negotiation skills in realistic scenarios. Additionally, the introduction of AI instructors can provide guidance, feedback, and coaching tailored to the individual needs of each student, enhancing the effectiveness of the training program. The AI instructors can provide immediate feedback and guidance, helping students improve their decision-making and problem-solving abilities. The proposed immersive learning environment is expected to significantly enhance leadership competencies of students, such as communication, decision-making and conflict resolution in the practical context. This study highlights the benefits of utilizing conversational AI in educational settings to prepare construction students for real-world leadership roles. By providing hands-on, practical experience in dealing with site-specific challenges, students can develop the necessary skills and confidence to excel in their future roles.

A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data (빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법)

  • Kim, Minjeong;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.93-110
    • /
    • 2015
  • The recommender system is a system which recommends products to the customers who are likely to be interested in. Based on automated information filtering technology, various recommender systems have been developed. Collaborative filtering (CF), one of the most successful recommendation algorithms, has been applied in a number of different domains such as recommending Web pages, books, movies, music and products. But, it has been known that CF has a critical shortcoming. CF finds neighbors whose preferences are like those of the target customer and recommends products those customers have most liked. Thus, CF works properly only when there's a sufficient number of ratings on common product from customers. When there's a shortage of customer ratings, CF makes the formation of a neighborhood inaccurate, thereby resulting in poor recommendations. To improve the performance of CF based recommender systems, most of the related studies have been focused on the development of novel algorithms under the assumption of using a single profile, which is created from user's rating information for items, purchase transactions, or Web access logs. With the advent of big data, companies got to collect more data and to use a variety of information with big size. So, many companies recognize it very importantly to utilize big data because it makes companies to improve their competitiveness and to create new value. In particular, on the rise is the issue of utilizing personal big data in the recommender system. It is why personal big data facilitate more accurate identification of the preferences or behaviors of users. The proposed recommendation methodology is as follows: First, multimodal user profiles are created from personal big data in order to grasp the preferences and behavior of users from various viewpoints. We derive five user profiles based on the personal information such as rating, site preference, demographic, Internet usage, and topic in text. Next, the similarity between users is calculated based on the profiles and then neighbors of users are found from the results. One of three ensemble approaches is applied to calculate the similarity. Each ensemble approach uses the similarity of combined profile, the average similarity of each profile, and the weighted average similarity of each profile, respectively. Finally, the products that people among the neighborhood prefer most to are recommended to the target users. For the experiments, we used the demographic data and a very large volume of Web log transaction for 5,000 panel users of a company that is specialized to analyzing ranks of Web sites. R and SAS E-miner was used to implement the proposed recommender system and to conduct the topic analysis using the keyword search, respectively. To evaluate the recommendation performance, we used 60% of data for training and 40% of data for test. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. A widely used combination metric called F1 metric that gives equal weight to both recall and precision was employed for our evaluation. As the results of evaluation, the proposed methodology achieved the significant improvement over the single profile based CF algorithm. In particular, the ensemble approach using weighted average similarity shows the highest performance. That is, the rate of improvement in F1 is 16.9 percent for the ensemble approach using weighted average similarity and 8.1 percent for the ensemble approach using average similarity of each profile. From these results, we conclude that the multimodal profile ensemble approach is a viable solution to the problems encountered when there's a shortage of customer ratings. This study has significance in suggesting what kind of information could we use to create profile in the environment of big data and how could we combine and utilize them effectively. However, our methodology should be further studied to consider for its real-world application. We need to compare the differences in recommendation accuracy by applying the proposed method to different recommendation algorithms and then to identify which combination of them would show the best performance.

A Study on the Impact Factors of Contents Diffusion in Youtube using Integrated Content Network Analysis (일반영향요인과 댓글기반 콘텐츠 네트워크 분석을 통합한 유튜브(Youtube)상의 콘텐츠 확산 영향요인 연구)

  • Park, Byung Eun;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.19-36
    • /
    • 2015
  • Social media is an emerging issue in content services and in current business environment. YouTube is the most representative social media service in the world. YouTube is different from other conventional content services in its open user participation and contents creation methods. To promote a content in YouTube, it is important to understand the diffusion phenomena of contents and the network structural characteristics. Most previous studies analyzed impact factors of contents diffusion from the view point of general behavioral factors. Currently some researchers use network structure factors. However, these two approaches have been used separately. However this study tries to analyze the general impact factors on the view count and content based network structures all together. In addition, when building a content based network, this study forms the network structure by analyzing user comments on 22,370 contents of YouTube not based on the individual user based network. From this study, we re-proved statistically the causal relations between view count and not only general factors but also network factors. Moreover by analyzing this integrated research model, we found that these factors affect the view count of YouTube according to the following order; Uploader Followers, Video Age, Betweenness Centrality, Comments, Closeness Centrality, Clustering Coefficient and Rating. However Degree Centrality and Eigenvector Centrality affect the view count negatively. From this research some strategic points for the utilizing of contents diffusion are as followings. First, it is needed to manage general factors such as the number of uploader followers or subscribers, the video age, the number of comments, average rating points, and etc. The impact of average rating points is not so much important as we thought before. However, it is needed to increase the number of uploader followers strategically and sustain the contents in the service as long as possible. Second, we need to pay attention to the impacts of betweenness centrality and closeness centrality among other network factors. Users seems to search the related subject or similar contents after watching a content. It is needed to shorten the distance between other popular contents in the service. Namely, this study showed that it is beneficial for increasing view counts by decreasing the number of search attempts and increasing similarity with many other contents. This is consistent with the result of the clustering coefficient impact analysis. Third, it is important to notice the negative impact of degree centrality and eigenvector centrality on the view count. If the number of connections with other contents is too much increased it means there are many similar contents and eventually it might distribute the view counts. Moreover, too high eigenvector centrality means that there are connections with popular contents around the content, and it might lose the view count because of the impact of the popular contents. It would be better to avoid connections with too powerful popular contents. From this study we analyzed the phenomenon and verified diffusion factors of Youtube contents by using an integrated model consisting of general factors and network structure factors. From the viewpoints of social contribution, this study might provide useful information to music or movie industry or other contents vendors for their effective contents services. This research provides basic schemes that can be applied strategically in online contents marketing. One of the limitations of this study is that this study formed a contents based network for the network structure analysis. It might be an indirect method to see the content network structure. We can use more various methods to establish direct content network. Further researches include more detailed researches like an analysis according to the types of contents or domains or characteristics of the contents or users, and etc.

A Study on the first inventor defense in the US patent law (미국에서의 선발명자 항변에 관한 연구)

  • Chang, Eun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1319-1336
    • /
    • 2006
  • The successive round of talks oil Korea-USA Free Trade Agreement (FTA) has continued, and it also has the Intellectual property(IPR) unit. Until now, tile one of most disputing concerns in IPR unit through talks is the limitation of compulsory license of claimed invention. The US is urging to establish a safeguard for IPR, as similar measure of the US, to protecting the profit of the US enterprises through these on-going talks, it is more likely expected to take the offensive about infringement of the patent seriously. Based on the current circumstances, the provision strategy study is needed to obtain Korea inventors the first inventor defense under the US patent law system as well as understand the current Korea's patent law and its revision against that in the US. In patent Law, both nations with first to file system and first to invent system permit a prior user of an invention to continue to use the invention notwithstanding its subsequent patenting by another under being subject to certain qualifications and limitations, even though a patent by a later inventor is granted. Normally, the first inventor defense has been used to compensate the drawbacks of the first to file system. The US patent Law, however, adopting the first to invent system admits the first inventor defense. Therefore, pursuing counteract provision under consideration with Korean patent Law system and research environment along with investigating the reason why the US adopted its patent law system, the scope of right, and the new reform of Act. 2005 of the institute, which promotes the first Korean inventor to possess the defense right of the US, provides certain preparations for Korean companies against the expected offensive from the US ones under the US patent Law system.

  • PDF

A Study on User's Opinion for Designing of Multi-Functional Plant Applications (복합적 기능의 식물 애플리케이션 디자인을 위한 사용자 조사)

  • Lee, Ha Na;Park, Han Na;Paik, Jin Kyung
    • Korea Science and Art Forum
    • /
    • v.37 no.4
    • /
    • pp.297-308
    • /
    • 2019
  • Air pollution due to the fine dust level updating every day, and the problem of indoor air pollution due to ventilation difficulties and indoor discharge pollutants is also serious. In order to improve the indoor air quality, the air purification effect using the plants is prominent. In this study was started to investigated the living environment of modern people, the risk of indoor air pollution and the improvement function of plants, and to activate plant application. The purpose of this study is to analyze the main functions and design status of domestic and overseas plant - related applications, and to understand the actual use of modern plant applications and to help them learn more convenient plant - related knowledge. Therefore, this paper attempted to establish a basis for suggesting a new plant application by conducting a survey on the health effects of indoor air pollution and user awareness of plant - related applications. The results and contents of the study are as follows. First, as a theoretical review, indoor air pollution is more dangerous to modern people who have a high proportion of indoor living time and adversely affects their health. In order to solve such a problem, it has been shown that air conditioning and stress reduction can be effectively achieved by placing plants in the indoor space. Second, the analysis of the previous study shows the risk of indoor air pollution and its adverse effects on health. In addition, I have been able to find some researches related to the improvement of the indoor air by using the air purifying plants, and I can see the improvement of the user's behavior through the development or improvement of the application. Third, as a result of the survey on the status of domestic and overseas plant application, the main function of the application having high installation number was watering notification, provision of basic information of plants, and most of the functions were plant discerment through cameras. Fourth, most of the survey respondents have either raised or raised plants. Those who have little experience with plant applications have also shown positive feedback in the future on the use of plant-related applications. In addition, due to social problems such as air pollution, air purification using plants and functional plants showed high interest. Based on these results, we propose the need for a multi-functional plant application that can improve the indoor air pollution and facilitate the provision of information related to it.

UX Methodology Study by Data Analysis Focusing on deriving persona through customer segment classification (데이터 분석을 통한 UX 방법론 연구 고객 세그먼트 분류를 통한 페르소나 도출을 중심으로)

  • Lee, Seul-Yi;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.151-176
    • /
    • 2021
  • As the information technology industry develops, various kinds of data are being created, and it is now essential to process them and use them in the industry. Analyzing and utilizing various digital data collected online and offline is a necessary process to provide an appropriate experience for customers in the industry. In order to create new businesses, products, and services, it is essential to use customer data collected in various ways to deeply understand potential customers' needs and analyze behavior patterns to capture hidden signals of desire. However, it is true that research using data analysis and UX methodology, which should be conducted in parallel for effective service development, is being conducted separately and that there is a lack of examples of use in the industry. In thiswork, we construct a single process by applying data analysis methods and UX methodologies. This study is important in that it is highly likely to be used because it applies methodologies that are actively used in practice. We conducted a survey on the topic to identify and cluster the associations between factors to establish customer classification and target customers. The research methods are as follows. First, we first conduct a factor, regression analysis to determine the association between factors in the happiness data survey. Groups are grouped according to the survey results and identify the relationship between 34 questions of psychological stability, family life, relational satisfaction, health, economic satisfaction, work satisfaction, daily life satisfaction, and residential environment satisfaction. Second, we classify clusters based on factors affecting happiness and extract the optimal number of clusters. Based on the results, we cross-analyzed the characteristics of each cluster. Third, forservice definition, analysis was conducted by correlating with keywords related to happiness. We leverage keyword analysis of the thumb trend to derive ideas based on the interest and associations of the keyword. We also collected approximately 11,000 news articles based on the top three keywords that are highly related to happiness, then derived issues between keywords through text mining analysis in SAS, and utilized them in defining services after ideas were conceived. Fourth, based on the characteristics identified through data analysis, we selected segmentation and targetingappropriate for service discovery. To this end, the characteristics of the factors were grouped and selected into four groups, and the profile was drawn up and the main target customers were selected. Fifth, based on the characteristics of the main target customers, interviewers were selected and the In-depthinterviews were conducted to discover the causes of happiness, causes of unhappiness, and needs for services. Sixth, we derive customer behavior patterns based on segment results and detailed interviews, and specify the objectives associated with the characteristics. Seventh, a typical persona using qualitative surveys and a persona using data were produced to analyze each characteristic and pros and cons by comparing the two personas. Existing market segmentation classifies customers based on purchasing factors, and UX methodology measures users' behavior variables to establish criteria and redefine users' classification. Utilizing these segment classification methods, applying the process of producinguser classification and persona in UX methodology will be able to utilize them as more accurate customer classification schemes. The significance of this study is summarized in two ways: First, the idea of using data to create a variety of services was linked to the UX methodology used to plan IT services by applying it in the hot topic era. Second, we further enhance user classification by applying segment analysis methods that are not currently used well in UX methodologies. To provide a consistent experience in creating a single service, from large to small, it is necessary to define customers with common goals. To this end, it is necessary to derive persona and persuade various stakeholders. Under these circumstances, designing a consistent experience from beginning to end, through fast and concrete user descriptions, would be a very effective way to produce a successful service.

Big Five Personality in Discriminating the Groups by the Level of Social Sims (심리학적 도구 '5요인 성격 특성'에 의한 소셜 게임 연구: <심즈 소셜> 게임의 분석사례를 중심으로)

  • Lee, Dong-Yeop
    • Cartoon and Animation Studies
    • /
    • s.29
    • /
    • pp.129-149
    • /
    • 2012
  • The purpose of this study was to investigate the clustering and Big Five Personality domains in discriminating groups by level of school-related adjustment, as experienced by Social Sims game users. Social Games are based on web that has simple rules to play in fictional time and space background. This paper is to analyze the relationships between social networks and user behaviors through the social games . In general, characteristics of social games are simple, fun and easy to play, popular to the public, and based on personal connections in reality. These features of social games make themselves different from video games with one player or MMORPG with many unspecific players. Especially Social Game show a noticeable characteristic related to social learning. The object of this research is to provide a possibility that game that its social perspective can be strengthened in social game environment and analyze whether it actually influences on problem solving of real life problems, therefore suggesting its direction of alternative play means and positive simulation game. Data was collected by administering 4 questionnaires (the short version of BFI, Satisfaction with life, Career Decision-.Making Self-.Efficacy, Depression) to the participants who were 20 people in Seoul and Daejeon. For the purposes of the data analysis, both Stepwise Discriminant analysis and Cluster analysis was employed. Neuroticism, Openness, Conscientiousness within the Big Five Personality domains were seen to be significant variables when it came to discriminating the groups. These findings indicated that the short version of the BFI may be useful in understanding for game user behaviors When it comes to cultural research, digital game takes up a significant role. We can see that from the fact that game, which has only been considered as a leisure activity or commercial means, is being actively research for its methodological, social role and function. Among digital game's several meanings, one of the most noticeable ones is the research on its critical, social participating function. According to Jame Paul gee, the most important merit of game is 'projected identity'. This means that experiences from various perspectives is possible.[1] In his recent autobiography , he described gamer as an active problem solver. In addition, Gonzalo Francesca also suggested an alternative game developing method through 'game that conveys critical messages by strengthening critical reasons'. [2] They all provided evidences showing game can be a strong academic tool. Not only does a genre called social game exist in the field of media and Social Network Game, but there are also some efforts to positively evaluate its value Through these kinds of researches, we can study how game can give positive influence along with the change in its general perception, which would eventually lead to spreading healthy game culture and enabling fresh life experience. This would better bring out the educative side of the game and become a social communicative tool. The object of this game is to provide a possibility that the social aspect can be strengthened within the game environment and analyze whether it actually influences the problem solving of real life problems. Therefore suggesting it's direction of alternative play means positive game simulation.

Development of Convenience Evaluation Method of Urban Railway Station based on Universal Design - Focusing on Suseo Station - (유니버설디자인 기반 도시철도역사 편의성 평가방법 개발 - 수서역을 대상으로 -)

  • Lee, Sang Hwa;Kim, Hwang Bae;Kim, Hyun Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.159-165
    • /
    • 2018
  • In recent years, universal design concepts have been introduced that are designed to make everybody more comfortable and safe to use for products, buildings, environments, services, and so on. In the case of urban railroad history, it is important to maintain facilities that incorporate the universal design concept because it is an important facility that serves as a base of city life and there are various users. This research is the last annual task of 5 years as part of the project of "Development of Technique to Improve the Convenience of Urban Railway History User" by the National Institute of Transportation Technology Promotion Agency. The purpose of this study is to develop criteria and method of facilities convenience evaluation based on UD and to evaluate user convenience by selecting test bed station. For this purpose, the UD principle of the historic facilities of Weihai Urban Railway was established and detailed evaluation criteria were presented. As a result of evaluating the test bed history using the 5-point Likert scale of the joint research institute / railway operating agency / expert, 50.3% of convenience improvement was achieved. As a result of evaluating the applicability according to the UD principle, 48.7% Respectively. The evaluation criteria and methodology based on the UD suggested in this study is a quantitative method for evaluating UD application of urban railway facilities in the future.

A Study on Urban Open Space Selection Attributes as an Urban Entertainment Destination (도시 엔터테인먼트 목적지(UED)로서 도시 오픈 스페이스의 선택속성 연구)

  • Chae, Jin-Hae;Kim, Yong-Gook;Kim, Young-Hyun;Son, Yong-Hoon;Zoh, Kyung-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.4
    • /
    • pp.56-67
    • /
    • 2013
  • This paper asks what the Selection Attributes of urban open space are which carries out a role as an Urban Entertainment Destination. Case studies have chosen the Cheonggyecheon Waterfront, Seoul Forest Park, Seonyudo Park and Banpo Hangang Park as the representative open spaces in Seoul. The methods of study are observation investigation, a literature investigation and the survey to 233 visitors that conducted the ANOVA analysis and Regression analysis by SPSS 18.0. As a result, first, the urban open space in Seoul has had 8 elements of UED; Landscape, Multi anchoring, Contextual links, Programmability, Community, Branded identity, Security and Service. Second, they are being used not the neighborhood type but a wide area type. Third, Landscape, Security and Service are most important while Programmability and Community are less important than other factors in EUOS factors. Lastly, it was analysed that the influential factor of revisitation and satisfaction is Landscape, which is the common factor. Security in revisitation and Contextual links in satisfaction are especially additional factors. The landscape property is an important element to make an Entertainment Urban Open Space(EUOS). The virtue of landscape in the EUOS relates not only park facility or program that installed in the place but also the overall mood involving park user's activities in the place. To be a successful EUOS, a park facility, program and the overall mood involving user's activities need to be integrative approach to enhance the virtue of landscape.