• Title/Summary/Keyword: User Defined Function

Search Result 191, Processing Time 0.025 seconds

Designing Augmented Spatial Experiences of Architectural Heritage - Information Modeling for Intelligent Content Service Platform - (건축문화유산의 공간경험 디자인 - 지능형 콘텐츠 서비스 플랫폼과 정보표현체계 -)

  • Jang, Sun-Young;Kim, Seongjun;Kim, Sung-Ah
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.4
    • /
    • pp.15-24
    • /
    • 2019
  • Currently, museums and architectural heritage provide augmented user experiences by incorporating various media technologies. They still, however, suffer from the limitation of entertainment-based and the provision of location-based simple and repetitive contents. In addition, while acting as a key medium of experience for architectural heritage, the concept of space is not properly reflected in current services. The purpose of this study is to design user space experience considering such characteristics of architectural heritage. The spatial experience content and content production platform are defined. This software platform creates content that enhances the experience of the place by giving a context-based digital data associated with space and objects. The spatial experience content is designed as a series of experience sequences. The composition of the sequence borrows the method of film and narrative which segment and connect consecutive experiences on a scene basis considering user's detailed spatial experience. Therefore, content components can be combined and reproduced in various types. Augmented contents were extracted by using rule-based reasoning function of ontology at the moment. As a practical example of architectural heritage, the Seokjojeon Hall is used to reveal a spatial experience scenario.

The Effects of Combustion Parameters on the Characteristics of a Steam-Methane Reformer (연소 변수가 수증기-메탄 개질기의 특성에 미치는 영향)

  • Lee, Jae-Seong;Kim, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.29-31
    • /
    • 2012
  • The effects of combustion parameters on the characteristics of a steam-methane reformer. The reformer system was numerically simulated using a simplified two-dimensional axisymmetric model domain with an appropriate user-defined function. The fuel ratio, defined as the ratio of methane flow rate in the combustor to that in the reactor, was varied from 20 to 80%. The equivalence ratio was changed from 0.5 to 1.0. The results indicated that as the fuel ratio increased, the production rates of hydrogen and carbon monoxide increased, although their rates of increase diminished. In fact, at the highest heat supply rates, hydrogen production was actually slightly decreased. Simulations showed that equivalence ratio of 0.7 yielded the highest steam-methane mixture temperature despite a 43% higher air flow rate than the stoichiometric flow rate. This means that the production of hydrogen and carbon monoxide can be increased by adjusting the equivalence ratio, especially when the heat supply is insufficient.

  • PDF

Identifying Temporal Pattern Clusters to Predict Events in Time Series

  • Heesoo Hwang
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.125-134
    • /
    • 2002
  • This paper proposes a method for identifying temporal pattern clusters to predict events in time series. Instead of predicting future values of the time series, the proposed method forecasts specific events that may be arbitrarily defined by the user. The prediction is defined by an event characterization function, which is the target of prediction. The events are predicted when the time series belong to temporal pattern clusters. To identify the optimal temporal pattern clusters, fuzzy goal programming is formulated to combine multiple objectives and solved by an adaptive differential evolution technique that can overcome the sensitivity problem of control parameters in conventional differential evolution. To evaluate the prediction method, five test examples are considered. The adaptive differential evolution is also tested for twelve optimization problems.

  • PDF

A Case Study on Diagnosis and Checking for Machine-Tools with an OAC (개방형 컨트롤러를 갖는 공작기계에 적합한 진단 및 신호점검사례)

  • 김동훈;송준엽;김경돈;김찬봉;김선호;고광식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.292-297
    • /
    • 2004
  • The conventional computerized numerical controller (CNC) of machine tools has been increasingly replaced by a PC-based open architecture CNC (OAC) which is independent of the CNC vendor. The OAC and machine tools with OAC led the convenient environment where it is possible to implement user-defined application programs efficiently within CNC. Tis paper proposes a method of operational fault cause diagnosis which is based on the status of programmable logic controller (PLC) in machine tools with OAC. The operational fault is defined as a disability state occurring during normal operation of machine tools. The faults are occupied by over 70% of all faults and are also unpredictable as most of them occur without any warning. Two diagnosis models, the switching function (SF) and the step switching function (SSF), are propose in order to diagnose the fault cause quickly and exactly. The cause of an occurring fault is logically diagnosed through a fault diagnosis system (FDS) using the diagnosis models. A suitable interface environment between CNC and develope application modules is constructed in order to implement the diagnostic functions in the CNC domain. The diagnosed results were displayed on a CNC monitor for machine operators and provided to a remote site through a web browser. The result of his research could be a model of the fault cause diagnosis and the remote monitoring for machine tools with OAC.

  • PDF

Diagnosing the Cause of Operational Faults in Machine Tools with an Open Architecture CNC

  • Kim Dong Hoon;Kim Sun Ho;Song Jun-Yeob
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1597-1610
    • /
    • 2005
  • The conventional computerized numerical controller (CNC) of machine tools has been increasingly replaced by a PC-based open architecture CNC (OAC) that is independent of a CNC vendor. The OAC and machine tools with an OAC have led to a convenient environment in which user-defined applications can be efficiently implemented within a CNC. This paper proposes a method of diagnosing the cause of operational faults. The method is based on the status of a programmable logic controller in machine tools with an OAC. An operational fault is defined as a disability that occurs during the normal operation of machine tools. Operational faults constitute more than 70 percent of all faults and are also unpredictable because most of them occur without any warning. To quickly and correctly diagnose the cause of an operational fault, two diagnostic models are proposed: the switching function and the step switching function. The cause of the fault is logically diagnosed through a fault diagnosis system using diagnostic models. A suitable interface environment between a CNC and developed application modules is constructed to implement the diagnostic functions in the CNC domain. The results of the diagnosis were displayed on a CNC monitor for machine operators and transmitted to a remote site through a Web browser. The proposed diagnostic method and its results were useful to unskilled machine operators and reduced the machine downtime.

Design and Analysis of the Basic Components for the Semiconductor Wafer Cleaning Equipment Monitoring System (반도체 웨이퍼 세정 장비 모니터링 시스템을 위한 기본 요소의 분석 및 설계)

  • Kang, Ho-Seok;Rim, Seong-Rak
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.115-125
    • /
    • 2000
  • In this paper, we suggest the basic components of monitoring system for the semiconductor wafer cleaning equipment and a monitoring system model based on these components. Basic component is defined as a mandatory function which consists of communication with the control system, user interface, communication with the remote monitoring system, management of monitoring data and inter-task communication. We have defined the function of each component and the relation among them, and designed each component as a task. To evaluate the validity of the suggested model, we have implemented the basic components using the Visual C++ on Windows NT and applied them to the Monitoring System for the semiconductor wafer cleaning equipment.

  • PDF

Experimental and Numerical Study on Slamming Impact

  • Kwon, Sun Hong;Yang, Young Jun;Lee, Hee Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This paper presents the results of experimental and numerical research on the slamming phenomenon. Two experimental techniques were proposed in this study. The traditional free drop tests were carried out. However, the free drop tests done in this study using an LM guide showed excellent repeatability, unlike those of other researchers. The coefficients of variation for the drop test done in this experiment were less than 0.1. The other experimental technique proposed in this study was a novel concept that used a pneumatic cylinder. The pneumatic cylinder could accelerate the specimen over a very short distance from the free surface. As a result, high rates of repeatability were achieved. In the numerical study, the development of in-house code and utilization of commercial code were carried out. The in-house code developed was based on the boundary element method. It is a potential code. This was mostly applied to the computation of the wedge entry problem. The commercial code utilized was FLUENT. Most of the previous slamming research was done under the assumption of a constant body velocity all through the impact process, which is not realistic at all. However, the interaction of a fluid and body were taken into account by employing a user-defined function in this study. The experimental and numerical results were compared. The in-house code based on BEM showed better agreement than that of the FLUENT computation when it cames to the wedge computation. However, the FLUENT proved that it could deal with a very complex geometry while BEM could not. The proposed experimental and numerical procedures were shown to be very promising tools for dealing with slamming problems.

NUMERICAL INVESTIGATION ON STATIC STIFFNESS CHARACTERISTICS OF POROUS AIR BEARING CONSIDERING ROUGHNESS EFFECTS (조도효과를 고려한 다공질 공기베어링의 정강성 특성에 관한 수치해석 연구)

  • Gwon, H.R.;Lee, S.H.;Lee, J.E.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.62-67
    • /
    • 2008
  • This study aims to investigate numerically the static stiffness characteristics of porous air bearing and to estimate appropriate permeability values of porous medium. In particular, a new roughness model is proposed and implemented into the commercial CFD code (FLUENT Ver. 6.2) by using C language based user subroutine. The predicted results are extensively compared with experimental data. The roughness model is also validated through comparison with the results from open literature. It is found that the predictions for static stiffness are in good agreement with experimental data. Therefore, the suggested model based on the roughness Reynolds number can be used in studying the stiffness characteristics of porous air bearing effectively. In addition, numerical simulations of various diameter size and conditions are conducted. According the results, it is expected that the static stiffness of porous air bearing has the non-linear characteristics.

A Greedy Merging Method for User-Steered Mesh Segmentation

  • Ha, Jong-Sung;Park, Young-Jin;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.25-29
    • /
    • 2007
  • In this paper, we discuss the mesh segmentation problem which divides a given 3D mesh into several disjoint sets. To solve the problem, we propose a greedy method based on the merging priority metric defined for representing the geometric properties of meaningful parts. The proposed priority metric is a weighted function using five geometric parameters, those are, a distribution of Gaussian map, boundary path concavity, boundary path length, cardinality, and segmentation resolution. In special, we can control by setting up the weight values of the proposed geometric parameters to obtain visually better mesh segmentation. Finally, we carry out an experiment on several 3D mesh models using the proposed methods and visualize the results.

Optimal Design of PSC-I Girder Bridge Considering Life Cycle Cost (생애주기비용을 고려한 PSC-I형 교량의 최적설계)

  • Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the procedure for the optimal design of a PSC-I girder bridge considering life cycle cost (LCC). The load carrying capacity curves for the concrete deck, PSC-I girder and $\pi$-type pier were derived and used for the estimate of service lives. Total life cycle cost for the service life was calculated as sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The advanced First Order Second Moment method was used to estimate the damage cost. The optimization method was applied to the design of PSC-I girder bridge. The objective function was set to the annual cost, which is defined by dividing the total life cycle cost by the service life, and constraints were formulated on the basis of Korean Standards. The optimal design was performed for various service lives and the effects of design factors were investigated.