• Title/Summary/Keyword: User Based Collaborative Filtering

Search Result 276, Processing Time 0.025 seconds

A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction (CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구)

  • Li, Qinglong;Lee, Byunghyun;Li, Xinzhe;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.29-56
    • /
    • 2021
  • Recently, various types of products have been launched with the rapid growth of the e-commerce market. As a result, many users face information overload problems, which is time-consuming in the purchasing decision-making process. Therefore, the importance of a personalized recommendation service that can provide customized products and services to users is emerging. For example, global companies such as Netflix, Amazon, and Google have introduced personalized recommendation services to support users' purchasing decisions. Accordingly, the user's information search cost can reduce which can positively affect the company's sales increase. The existing personalized recommendation service research applied Collaborative Filtering (CF) technique predicts user preference mainly use quantified information. However, the recommendation performance may have decreased if only use quantitative information. To improve the problems of such existing studies, many studies using reviews to enhance recommendation performance. However, reviews contain factors that hinder purchasing decisions, such as advertising content, false comments, meaningless or irrelevant content. When providing recommendation service uses a review that includes these factors can lead to decrease recommendation performance. Therefore, we proposed a novel recommendation methodology through CNN-based review usefulness score prediction to improve these problems. The results show that the proposed methodology has better prediction performance than the recommendation method considering all existing preference ratings. In addition, the results suggest that can enhance the performance of traditional CF when the information on review usefulness reflects in the personalized recommendation service.

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

Multi-day Trip Planning System with Collaborative Recommendation (협업적 추천 기반의 여행 계획 시스템)

  • Aprilia, Priska;Oh, Kyeong-Jin;Hong, Myung-Duk;Ga, Myeong-Hyeon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.159-185
    • /
    • 2016
  • Planning a multi-day trip is a complex, yet time-consuming task. It usually starts with selecting a list of points of interest (POIs) worth visiting and then arranging them into an itinerary, taking into consideration various constraints and preferences. When choosing POIs to visit, one might ask friends to suggest them, search for information on the Web, or seek advice from travel agents; however, those options have their limitations. First, the knowledge of friends is limited to the places they have visited. Second, the tourism information on the internet may be vast, but at the same time, might cause one to invest a lot of time reading and filtering the information. Lastly, travel agents might be biased towards providers of certain travel products when suggesting itineraries. In recent years, many researchers have tried to deal with the huge amount of tourism information available on the internet. They explored the wisdom of the crowd through overwhelming images shared by people on social media sites. Furthermore, trip planning problems are usually formulated as 'Tourist Trip Design Problems', and are solved using various search algorithms with heuristics. Various recommendation systems with various techniques have been set up to cope with the overwhelming tourism information available on the internet. Prediction models of recommendation systems are typically built using a large dataset. However, sometimes such a dataset is not always available. For other models, especially those that require input from people, human computation has emerged as a powerful and inexpensive approach. This study proposes CYTRIP (Crowdsource Your TRIP), a multi-day trip itinerary planning system that draws on the collective intelligence of contributors in recommending POIs. In order to enable the crowd to collaboratively recommend POIs to users, CYTRIP provides a shared workspace. In the shared workspace, the crowd can recommend as many POIs to as many requesters as they can, and they can also vote on the POIs recommended by other people when they find them interesting. In CYTRIP, anyone can make a contribution by recommending POIs to requesters based on requesters' specified preferences. CYTRIP takes input on the recommended POIs to build a multi-day trip itinerary taking into account the user's preferences, the various time constraints, and the locations. The input then becomes a multi-day trip planning problem that is formulated in Planning Domain Definition Language 3 (PDDL3). A sequence of actions formulated in a domain file is used to achieve the goals in the planning problem, which are the recommended POIs to be visited. The multi-day trip planning problem is a highly constrained problem. Sometimes, it is not feasible to visit all the recommended POIs with the limited resources available, such as the time the user can spend. In order to cope with an unachievable goal that can result in no solution for the other goals, CYTRIP selects a set of feasible POIs prior to the planning process. The planning problem is created for the selected POIs and fed into the planner. The solution returned by the planner is then parsed into a multi-day trip itinerary and displayed to the user on a map. The proposed system is implemented as a web-based application built using PHP on a CodeIgniter Web Framework. In order to evaluate the proposed system, an online experiment was conducted. From the online experiment, results show that with the help of the contributors, CYTRIP can plan and generate a multi-day trip itinerary that is tailored to the users' preferences and bound by their constraints, such as location or time constraints. The contributors also find that CYTRIP is a useful tool for collecting POIs from the crowd and planning a multi-day trip.

Learning Material Bookmarking Service based on Collective Intelligence (집단지성 기반 학습자료 북마킹 서비스 시스템)

  • Jang, Jincheul;Jung, Sukhwan;Lee, Seulki;Jung, Chihoon;Yoon, Wan Chul;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.179-192
    • /
    • 2014
  • Keeping in line with the recent changes in the information technology environment, the online learning environment that supports multiple users' participation such as MOOC (Massive Open Online Courses) has become important. One of the largest professional associations in Information Technology, IEEE Computer Society, announced that "Supporting New Learning Styles" is a crucial trend in 2014. Popular MOOC services, CourseRa and edX, have continued to build active learning environment with a large number of lectures accessible anywhere using smart devices, and have been used by an increasing number of users. In addition, collaborative web services (e.g., blogs and Wikipedia) also support the creation of various user-uploaded learning materials, resulting in a vast amount of new lectures and learning materials being created every day in the online space. However, it is difficult for an online educational system to keep a learner' motivation as learning occurs remotely, with limited capability to share knowledge among the learners. Thus, it is essential to understand which materials are needed for each learner and how to motivate learners to actively participate in online learning system. To overcome these issues, leveraging the constructivism theory and collective intelligence, we have developed a social bookmarking system called WeStudy, which supports learning material sharing among the users and provides personalized learning material recommendations. Constructivism theory argues that knowledge is being constructed while learners interact with the world. Collective intelligence can be separated into two types: (1) collaborative collective intelligence, which can be built on the basis of direct collaboration among the participants (e.g., Wikipedia), and (2) integrative collective intelligence, which produces new forms of knowledge by combining independent and distributed information through highly advanced technologies and algorithms (e.g., Google PageRank, Recommender systems). Recommender system, one of the examples of integrative collective intelligence, is to utilize online activities of the users and recommend what users may be interested in. Our system included both collaborative collective intelligence functions and integrative collective intelligence functions. We analyzed well-known Web services based on collective intelligence such as Wikipedia, Slideshare, and Videolectures to identify main design factors that support collective intelligence. Based on this analysis, in addition to sharing online resources through social bookmarking, we selected three essential functions for our system: 1) multimodal visualization of learning materials through two forms (e.g., list and graph), 2) personalized recommendation of learning materials, and 3) explicit designation of learners of their interest. After developing web-based WeStudy system, we conducted usability testing through the heuristic evaluation method that included seven heuristic indices: features and functionality, cognitive page, navigation, search and filtering, control and feedback, forms, context and text. We recruited 10 experts who majored in Human Computer Interaction and worked in the same field, and requested both quantitative and qualitative evaluation of the system. The evaluation results show that, relative to the other functions evaluated, the list/graph page produced higher scores on all indices except for contexts & text. In case of contexts & text, learning material page produced the best score, compared with the other functions. In general, the explicit designation of learners of their interests, one of the distinctive functions, received lower scores on all usability indices because of its unfamiliar functionality to the users. In summary, the evaluation results show that our system has achieved high usability with good performance with some minor issues, which need to be fully addressed before the public release of the system to large-scale users. The study findings provide practical guidelines for the design and development of various systems that utilize collective intelligence.

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.