• Title/Summary/Keyword: User Application Information

Search Result 2,389, Processing Time 0.029 seconds

A Study on the Development of Interior Design Service for Autonomous Vehicles - Focusing on STEEP analysis Techniques - (자율주행차 인테리어 디자인서비스 개발연구 - STEEP 분석 기법을 적용한 사례 중심으로 -)

  • Kang, Taeho;Cho, Jounghyung
    • Journal of Service Research and Studies
    • /
    • v.11 no.3
    • /
    • pp.43-54
    • /
    • 2021
  • This study focused on indoor spaces and convenience devices among vehicle interior designs suitable for the autonomous driving era, and presented an interior design model for future automobiles by applying the STEEP analysis method. The service design methodology is applied to deal with changes in display devices installed for the purpose of rearranging layouts and providing driver-centered information. Changes in types and installation locations of displays for various purposes such as connected and infotainment are expected. In particular, through this analysis, trends and experiences through indoor interior research in future self-driving cars will be studied, and subsequent studies will be used as basic data for actual development and application. Key drivers were extracted after deriving future trends linking the research project conducted in five stages to STEEP and consulting experts through FGI. Through this, it was later presented as a direction for indoor design. Through user-centered participatory design methods, emotional keyword derivation methods were used, summarized the derived drivers in five major trends in the future society, and each derived drivers were grouped to consider the relevant technology fields, and added elements to the autonomous driving level. This is an indoor ray viewed from the perspective of various social issues as well as personal tendencies in the future self-driving car industry.

A Study on intent to use AI-enhanced development tools (AI 증강 개발 도구 사용의도에 관한 연구)

  • Hyun Ji Eun;Lee Seung Hwan;Gim Gwang Yong
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.89-104
    • /
    • 2024
  • This study is an empirical study to examine the factors that influence the intention to use artificial intelligence (AI) technology for SW engineering-related tasks, and the purpose of the study is to understand the key factors that influence the use in terms of AI augmentation characteristics and interactive UI/UX characteristics. For this purpose, a survey was conducted among information and communication workers who have experience in using AI-related technologies and the collected data was analyzed. The results of the empirical analysis showed that perceived usefulness was positively influenced by the factors of expertise, interestingness, realism, aesthetics, efficiency, and flexibility, and perceived ease of use was positively influenced by the factors of expertise, interestingness, realism, aesthetics, and flexibility. Variety had no effect on both perceived ease of use and perceived usefulness. Perceived ease of use had a significant effect on perceived immersion, which positively influenced intention to use. These findings are significant in that they provide an academic understanding of the factors that influence the use of AI-enhanced tools in SW engineering-related tasks such as application design, development, testing, and process automation, as well as practical directions for the creators of tools that provide AI-enhanced development services to develop user acquisition strategies.

Exercise Posture Calibration System using Pressure and Acceleration Sensors (압력 및 가속도 센서를 활용한 운동 자세 교정 시스템 )

  • Won-Ki Cho;Ye-Ram Park;Sang-Hyeon Park;Young-Min Song;Boong-Joo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.781-790
    • /
    • 2024
  • As modern people's interest in exercise and health increases, the demand for exercise-related information and devices is increasing, and exercising in the wrong posture can lead to body imbalance and injury. Therefore, in this study, the purpose of this study is to correct the posture for health promotion and injury prevention through the correct exercise posture of users. It was developed using Arduino Uno R3, a pressure sensor, and an acceleration sensor as the main memory device of the system. The pressure sensor was used to determine the squat posture, and the acceleration sensor was used to determine three types of gait: normal step, nasolabial step, and saddle step. Data is transmitted to a smartphone through a Bluetooth module and displayed on an app to guide the user in the correct exercise posture. The gait was determined based on the 20˚ angle at which the foot was opened, and the correct squat posture was compared with the ratio of the pressure sensor values of the forefoot and hindfoot based on the data of the skilled person. Therefore, based on an experiment with about 90% accuracy when determining gait and 95% accuracy based on a 7:3 ratio of pressure sensor values in squat posture, a system was established to guide users to exercise in the correct posture by checking in real time through a smartphone application and correcting exercise in the wrong posture.

A Study on Intuitive IoT Interface System using 3D Depth Camera (3D 깊이 카메라를 활용한 직관적인 사물인터넷 인터페이스 시스템에 관한 연구)

  • Park, Jongsub;Hong, June Seok;Kim, Wooju
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.137-152
    • /
    • 2017
  • The decline in the price of IT devices and the development of the Internet have created a new field called Internet of Things (IoT). IoT, which creates new services by connecting all the objects that are in everyday life to the Internet, is pioneering new forms of business that have not been seen before in combination with Big Data. The prospect of IoT can be said to be unlimited in its utilization. In addition, studies of standardization organizations for smooth connection of these IoT devices are also active. However, there is a part of this study that we overlook. In order to control IoT equipment or acquire information, it is necessary to separately develop interworking issues (IP address, Wi-Fi, Bluetooth, NFC, etc.) and related application software or apps. In order to solve these problems, existing research methods have been conducted on augmented reality using GPS or markers. However, there is a disadvantage in that a separate marker is required and the marker is recognized only in the vicinity. In addition, in the case of a study using a GPS address using a 2D-based camera, it was difficult to implement an active interface because the distance to the target device could not be recognized. In this study, we use 3D Depth recognition camera to be installed on smartphone and calculate the space coordinates automatically by linking the distance measurement and the sensor information of the mobile phone without a separate marker. Coordination inquiry finds equipment of IoT and enables information acquisition and control of corresponding IoT equipment. Therefore, from the user's point of view, it is possible to reduce the burden on the problem of interworking of the IoT equipment and the installation of the app. Furthermore, if this technology is used in the field of public services and smart glasses, it will reduce duplication of investment in software development and increase in public services.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

An Empirical Analysis on the Persistent Usage Intention of Chinese Personal Cloud Service (개인용 클라우드 서비스에 대한 중국 사용자의 지속적 사용의도에 관한 실증 연구)

  • Yu, Hexin;Sura, Suaini;Ahn, Jong-chang
    • Journal of Internet Computing and Services
    • /
    • v.16 no.3
    • /
    • pp.79-93
    • /
    • 2015
  • With the rapid development of information technology, the ways of usage have changed drastically. The ways and efficiency of traditional service application to data processing already could not satisfy the requirements of modern users. Nowadays, users have already understood the importance of data. Therefore, the processing and saving of big data have become the main research of the Internet service company. In China, with the rise and explosion of 115 Cloud leads to other technology companies have began to join the battle of cloud services market. Although currently Chinese cloud services are still mainly dominated by cloud storage service, the series of service contents based on cloud storage service have been affirmed by users, and users willing to try these new ways of services. Thus, how to let users to keep using cloud services has become a topic that worth for exploring and researching. The academia often uses the TAM model with statistical analysis to analyze and check the attitude of users in using the system. However, the basic TAM model obviously already could not satisfy the increasing scale of system. Therefore, the appropriate expansion and adjustment to the TAM model (i. e. TAM2 or TAM3) are very necessary. This study has used the status of Chinese internet users and the related researches in other areas in order to expand and improve the TAM model by adding the brand influence, hardware environment and external environments to fulfill the purpose of this study. Based on the research model, the questionnaires were developed and online survey was conducted targeting the cloud services users of four Chinese main cities. Data were obtained from 210 respondents were used for analysis to validate the research model. The analysis results show that the external factors which are service contents, and brand influence have a positive influence to perceived usefulness and perceived ease of use. However, the external factor hardware environment only has a positive influence to the factor of perceived ease of use. Furthermore, the perceived security factor that is influenced by brand influence has a positive influence persistent intention to use. Persistent intention to use also was influenced by the perceived usefulness and persistent intention to use was influenced by the perceived ease of use. Finally, this research analyzed external variables' attributes using other perspective and tried to explain the attributes. It presents Chinese cloud service users are more interested in fundamental cloud services than extended services. In private cloud services, both of increased user size and cooperation among companies are important in the study. This study presents useful opinions for the purpose of strengthening attitude for private cloud service users can use this service persistently. Overall, it can be summarized by considering the all three external factors could make Chinese users keep using the personal could services. In addition, the results of this study can provide strong references to technology companies including cloud service provider, internet service provider, and smart phone service provider which are main clients are Chinese users.

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.

A Spatio-Temporal Clustering Technique for the Moving Object Path Search (이동 객체 경로 탐색을 위한 시공간 클러스터링 기법)

  • Lee, Ki-Young;Kang, Hong-Koo;Yun, Jae-Kwan;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.3 s.15
    • /
    • pp.67-81
    • /
    • 2005
  • Recently, the interest and research on the development of new application services such as the Location Based Service and Telemetics providing the emergency service, neighbor information search, and route search according to the development of the Geographic Information System have been increasing. User's search in the spatio-temporal database which is used in the field of Location Based Service or Telemetics usually fixes the current time on the time axis and queries the spatial and aspatial attributes. Thus, if the range of query on the time axis is extensive, it is difficult to efficiently deal with the search operation. For solving this problem, the snapshot, a method to summarize the location data of moving objects, was introduced. However, if the range to store data is wide, more space for storing data is required. And, the snapshot is created even for unnecessary space that is not frequently used for search. Thus, non storage space and memory are generally used in the snapshot method. Therefore, in this paper, we suggests the Hash-based Spatio-Temporal Clustering Algorithm(H-STCA) that extends the two-dimensional spatial hash algorithm used for the spatial clustering in the past to the three-dimensional spatial hash algorithm for overcoming the disadvantages of the snapshot method. And, this paper also suggests the knowledge extraction algorithm to extract the knowledge for the path search of moving objects from the past location data based on the suggested H-STCA algorithm. Moreover, as the results of the performance evaluation, the snapshot clustering method using H-STCA, in the search time, storage structure construction time, optimal path search time, related to the huge amount of moving object data demonstrated the higher performance than the spatio-temporal index methods and the original snapshot method. Especially, for the snapshot clustering method using H-STCA, the more the number of moving objects was increased, the more the performance was improved, as compared to the existing spatio-temporal index methods and the original snapshot method.

  • PDF

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.

Development of Industrial Embedded System Platform (산업용 임베디드 시스템 플랫폼 개발)

  • Kim, Dae-Nam;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.50-60
    • /
    • 2010
  • For the last half a century, the personal computer and software industries have been prosperous due to the incessant evolution of computer systems. In the 21st century, the embedded system market has greatly increased as the market shifted to the mobile gadget field. While a lot of multimedia gadgets such as mobile phone, navigation system, PMP, etc. are pouring into the market, most industrial control systems still rely on 8-bit micro-controllers and simple application software techniques. Unfortunately, the technological barrier which requires additional investment and higher quality manpower to overcome, and the business risks which come from the uncertainty of the market growth and the competitiveness of the resulting products have prevented the companies in the industry from taking advantage of such fancy technologies. However, high performance, low-power and low-cost hardware and software platforms will enable their high-technology products to be developed and recognized by potential clients in the future. This paper presents such a platform for industrial embedded systems. The platform was designed based on Telechips TCC8300 multimedia processor which embedded a variety of parallel hardware for the implementation of multimedia functions. And open-source Embedded Linux, TinyX and GTK+ are used for implementation of GUI to minimize technology costs. In order to estimate the expected performance and power consumption, the performance improvement and the power consumption due to each of enabled hardware sub-systems including YUV2RGB frame converter are measured. An analytic model was devised to check the feasibility of a new application and trade off its performance and power consumption. The validity of the model has been confirmed by implementing a real target system. The cost can be further mitigated by using the hardware parts which are being used for mass production products mostly in the cell-phone market.