• Title/Summary/Keyword: Used-Armour Block

Search Result 2, Processing Time 0.019 seconds

Prediction of Stability Number for Tetrapod Armour Block Using Artificial Neural Network and M5' Model Tree (인공신경망과 M5' model tree를 이용한 Tetrapod 피복블록의 안정수 예측)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.109-117
    • /
    • 2011
  • It was calculated using empirical formulas for the weight of Tetrapod, which was a representative armor unit in the rubble mound breakwater in Korea. As the formulas were evaluated from a curve-fitting with the result of hydraulic test, the uncertainty of experimental error was included. Therefore, the neural network and M5' model tree were used to minimize the uncertainty and predicted the stability number of armor block. The index of agreement between the predicted and measured stability number was calculated to assess the degree of uncertainty for each model. While the neural network with the highest index of agreement have an excellent prediction capability, a significant disadvantage exists that general designers can not easily handle the method. However, although M5' model tree has a lower prediction capability than the neural network, the model tree is easily used by the designers because it has a good prediction capability compared with the existing empirical formula and can be used to propose the formulas like an empirical formula.

Impact Analyses for the Safety Checks of Used Wave Dissipation Concrete Block Considering Construction Phases (사용된 소파블록의 안전성 검토를 위한 시공단계별 충돌해석)

  • Huh, Taik-Nyung;Choi, Chang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.640-647
    • /
    • 2018
  • Many harbor structures have been constructed, and some structures are now under construction in Korea, which is a peninsular state and a logistics hub in Northeast Asia. Expansions and extensions of existing harbors are also being planned to meet increasing natural disaster threats. Wave-dissipation concrete blocks are recycled or discarded based on the personal experience of engineers only, and there are no safety checks or criteria. To check the safety of used blocks, material evaluations were done by visual inspection of blocks on the ground and under water and from 20 non-destructive measurements of the rebound hardness test and 3 concrete core samples. Wave-dissipation blocks are sometimes fully or partially damaged in the process of transferring and mounting them or during construction. Therefore, a safety check is essential for recycling blocks with an evaluation of materials while considering the construction phases. To do this, a block was modeled with a 3D finite element method using ADINA, and impact analyses were done according to the transfer, mounting, and construction phases. From the results of the impact analyses and material evaluation, the safety checks and reasonable evaluation of used blocks were examined, and detailed construction methods are proposed. The methods are expected to maximize the reuse of used wave-dissipation blocks from an economical point of view.