• Title/Summary/Keyword: Used Blade

Search Result 1,085, Processing Time 0.027 seconds

PERFORMANCE ANALYSIS OF HOVERING UH-60A ROTOR BLADE (UH-60A 로터 블레이드의 정지비행 성능해석)

  • Park, Y.M.;Choi, I.H.;Chang, B.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.45-49
    • /
    • 2008
  • The present paper describes the results of performance analysis for UH-60A rotor blade in hover. For the numerical simulations, commercial CFD software, FLUENT was used with Spalart-Allmaras turbulence model. The flow solver was based on node based scheme and second order spatial accuracy options was used for simulations. For the enhancement of wake capturing capability, high resolution grid was used around tip vortex region. Granting that somewhat over-prediction of thrust was observed near blade tip region, performance was well correlated with experimental data within 3% accuracy in the operating region. Finally it was shown that the present flow solver can be used as a preliminary performance analysis tool for hovering helicopter rotor blades.

PERFORMANCE ANALYSIS OF HOVERING UH-60A ROTOR BLADE (UH-60A 로터 블레이드의 정지비행 성능해석)

  • Park, Y.M.;Chang, B.H.;Chung, J.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.73-76
    • /
    • 2007
  • The present paper describes the results of performance analysis for UH-60A rotor blade in hover. For the numerical simulations, commercial CFD software, FLUENT was used with Spalart-Allmaras turbulence model. The flow solver was based on node based scheme and second order spatial accuracy options was used for simulations. For the enhancement of wake capturing capability, high resolution grid was used around tip vortex region. Granting that somewhat over prediction of thrust was observed near blade tip region, performance was well correlated with experimental data within 3% accuracy in the operating region. Finally it was shown that the present flow solver can be used for preliminary performance analysis tool for hovering helicopter rotor blades.

  • PDF

Numerical investigation on effects of rotor control strategy and wind data on optimal wind turbine blade shape

  • Yi, Jin-Hak;Yoon, Gil-Lim;Li, Ye
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.195-213
    • /
    • 2014
  • Recently, the horizontal axis rotor performance optimizer (HARP_Opt) tool was developed in the National Renewable Energy Laboratory, USA. This innovative tool is becoming more popular in the wind turbine industry and in the field of academic research. HARP_Optwas developed on the basis of two fundamental modules, namely, WT_Perf, a performance evaluator computer code using the blade element momentum theory; and a genetic algorithm module, which is used as an optimizer. A pattern search algorithm was more recently incorporated to enhance the optimization capability, especially the calculation time and consistency of the solutions. The blade optimization is an aspect that is highly dependent on experience and requires significant consideration on rotor control strategies, wind data, and generator type. In this study, the effects of rotor control strategies including fixed speed and fixed pitch, variable speed and fixed pitch, fixed speed and variable pitch, and variable speed and variable pitch algorithms on optimal blade shapes and rotor performance are investigated using optimized blade designs. The effects of environmental wind data and the objective functions used for optimization are also quantitatively evaluated using the HARP_Opt tool. Performance indices such as annual energy production, thrust, torque, and roof-flap moment forces are compared.

The Study of Structural Stability by Stacking Method of the Axial Blade (축류 블레이드의 스태킹 방식에 의한 구조 안정성 연구)

  • Jeong, Cheol-Young;Ko, Hee-Hwan;Park, Jun-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.46-51
    • /
    • 2012
  • This study is to confirm the deformation of blade when the location of stacking is moving. Also, it desire to determine the most stable location of stacking from the analysis. In the previous study, it is Known that moving the location of stacking is not influence to the aerodynamic performance. In this study SolidWorks premium 2010 SP4 is used for structure analysis. In reference blade and other 3 model analysis, the two mesh type is used, one is standard mesh type in SolidWorks, the other is curvature-based mesh type. The result of curvature-based mesh type is more stable than one of the standard mesh type regardless of mesh size, the number of mesh. The deformation of blade tip is the smallest, when the location of stacking is identical to the center of gravity of the blade section profile. So, if possible is design, this study recommends that the location of stacking is identical to the center of gravity the blade.

Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface (베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.27-38
    • /
    • 2005
  • The present study investigated the effect of relative position of the blade on blade surface heat transfer. The experiments were conducted in a low speed wind tunnel with a stationary annular turbine cascade. The test section has a single turbine stage composed of sixteen guide vanes and blades. The chord length of the blade is 150 mm and the mean tip clearance of the blade is $2.5\%$ of the blade chord. The Reynolds number based on blade inlet velocity and chord length is $1.5{\times}105$ and mean turbulence intensity is about $3\%$. To investigate the effect of relative position of blade, the blade at six different positions in a pitch was examined. For the detailed mass transfer measurements, a naphthalene sublimation technique was used. In general, complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as a laminar flow separation, relaminarization, flow acceleration, transition to turbulence and tip leakage vortices. The results show that the blade relative position affects those heat transfer characteristics because the distributions of incoming flow velocity and turbulence intensity are changed. Especially, the heat transfer pattern on the near-tip region is significantly affected by the relative position of the blade because the effect of tip leakage vortex is strongly dependent on the blade position. On the pressure side, the effect of blade position is not so significant as on the suction side surface although the position and the size of the separation bubble are changed.

Vibration suppression of rotating blade with piezocomposite materials (Piezocomposite 재료를 사용한 회전하는 블레이드의 진동억제)

  • Choi Seung-Chan;Kim Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.282-285
    • /
    • 2004
  • The main purpose of this study is the vibration suppression of rotating composite blade containing distributed piezoelectric sensors and actuators. The blade is modeled by thin-walled, single cell composite beam including the warping function, centrifugal force, Coriolis acceleration and piezoelectric effect. Further, the numerical study is performed m ing finite element method. The vibration of composite rotor is suppressed by piezocomposite actuators and PVDF sensors that are embedded between composite layers. A velocity feedback control algorithm coupling the direct and converse piezoelectric effect is used to actively control the' dynamic response of an integrated structure through a closed control loop. Responses of the rotating blade are investigated. Newmark time integration method is used to calculate the time response of the model. In the numerical simulation, the effect of parameters such as rotating speed, fiber orientation of the blade and size of actuators are studied in detail.

  • PDF

Approximate Modeling of Doctor Blade Contact Pressure for Realization of Uniform Image Quality (균일 화상 품질 구현을 위한 닥터 블레이드 접촉압력 근사모델링)

  • Choi, Ha-Young;Park, Seung Chan;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.241-247
    • /
    • 2013
  • The doctor blade is equipped in a toner cartridge and is a device to maintain the uniform thickness of a toner by controlling the pressure on the developing roller. The contact pressure between the developing roller and the doctor blade is one of the significant factors for image quality and durability of toner cartridge. The purpose of this study is to develop approximation model in order to minimize the time and cost which are needed much required in making optimal design of the doctor blade. Central composite design was used for the design of experiment and response surface design was used for approximation. The data for contact pressure were acquired through finite element analysis and data of image density and toner weight were acquired through experiment. The approximation model developed in this study has presented very high fitness.

Structural Design of Multi-Megawatt Wind Turbine Blade by Classical Lamination Theory (복합재료 고전적층판 이론을 이용한 MW급 해상풍력 블레이드 구조설계)

  • Bae, Sung-Youl;Kim, Bum-Suk;Lee, Sang-Lae;Kim, Woo-June;Kim, Yun-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.147-151
    • /
    • 2014
  • This research presents a method for the initial structural design of a multi-megawatt wind turbine blade. The structural data for a 2-MW blade were applied as the blade structural characteristic data of the reference blade. Tenkinds of blade models were newly designed by replacing the spar cap axial GRRP with a GFRP and CFRP These terms should be defined. at different orientations. The axial stiffness coefficients of the newly designed models were made equal to the coefficient of the reference blade. The required numbers of layers in each section of blades were calculated, and the lay-up designs were based on these numbers. Verification results showed that the design method that used the structural data of the reference blade was appropriate for the initial structural design of a wind turbine blade.

Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface - (입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 -)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.

Effect of Blade Materials on Wear Behaviors of Styrene-Butadiene Rubber and Butadiene Rubber

  • Lee, Gi-Bbeum;Shin, Beomsu;Han, Eunjung;Kang, Dawon;An, Dae Joon;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.172-178
    • /
    • 2021
  • The wear behavior of styrene-butadiene rubber (SBR) and butadiene rubber (BR) was investigated using a blade-type abrader with a steel blade (SB), Ti-coated tungsten carbide blade (TiB), or zirconia blade (ZB). The wear rate of SBR against SB and TiB decreased with increasing number of revolutions because of the blunting of the blades during wear. However, the wear rate of SBR against ZB remained nearly constant with little blade blunting. Generally, the wear rate of BR was largely unaffected by the blade material used for abrasion. The wear rate and frictional coefficient of SBR were found to be higher than those of BR at similar levels of frictional energy input. A power-law relationship was found between the wear rate and frictional energy input during abrasion. A well-known Schallamach pattern was observed for SBR, while a much finer pattern was observed for BR. The blade material affects the wear rate of the rubbers because the macromolecular free radicals and blade tend to undergo mechano-chemical reactions. The inorganic ZB was found to be the most inert for such a mechanism.