• Title/Summary/Keyword: Used Blade

Search Result 1,088, Processing Time 0.021 seconds

Heat Transfer and Flow Measurements on the Turbine Blade Surface (터빈 블레이드 표면과 선형익렬에서의 열전달 및 유동측정 연구)

  • Lee, Dae Hee;Sim, Jae Kyung;Park, Sung Bong;Lee, Jae Ho;Yoon, Soon Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.567-576
    • /
    • 1999
  • An experimental study has been conducted to investigate the effects of the free stream turbulence intensity and Reynolds number on the heat transfer and flow characteristics In the linear turbine cascade. Profiles of the time-averaged velocity, turbulence intensity, and Reynolds stress were measured in the turbine cascade passage. The static pressure and heat transfer distributions on the blade suction and pressure surfaces were also measured. The experiments were made for the Reynolds number based on the chord length, Rec = $2.2{\times}10^4$ to $1.1{\times}10^5$ and the free stream turbulence intensity, $FSTI_1$ = 0.6% to 9.1 %. The uniform heat flux boundary condition on the blade surface was created using the gold film Intrex and the surface temperature was measured by liquid crystal, while hot wire probes were used for the flow measurements. The results show that the free stream turbulence promotes the boundary layer development and delays the flow separation point on the suction surface. It was found that the boundary layer flows on the suction surface for all Reynolds numbers tested with $FSTI_1$ = 0.6% are laminar. It was also found that the heat transfer coefficient on the blade surface increases as the free stream turbulence intensity increases and the flow separation point moves downstream with an increasing Reynolds number. The results of skin friction coefficients are in good agreement with the heat transfer results in that for $FSTI_1{\geq}2.6%$, the turbulent boundary layer separation occurs.

Design and Analysis for the Propeller of MAVs in Low Reynolds Number Flows (저레이놀즈수 영역의 초소형비행체 프로펠러 설계 및 해석)

  • Lee, Ki-Hak;Kim, Kyu-Hong;Lee, Kyung-Tae;Ahn, Jon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.1-8
    • /
    • 2002
  • The performance of MAV(Micro Air Vehicles) propellers is highly affected by the aerodynamic characteristics of a 2-D blade airfoil shapes. XFOIL is used to predict the lift and drag coefficients in low Reynolds Number flows. ARA-D 6%, which shows a good performance in low Reynolds Number regions, is selected as a blade airfoil. The 3-D propeller blade shape is optimized with the minimum energy loss condition, and the distribution of aerodynamic coefficients of ARA-D 6% is calculated. The designed optimal blade is compared with the Black Widow's propeller blade shape in the same conditions. The results indicate that the designed propeller installed in MAV can provide a good performance.

An Experimental Investigation of the Aeroelastic Stability of Next-Generation Blade for Helicopter (헬리콥터용 차세대 블레이드의 공력탄성학적 안정성에 관한 시험적 연구)

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Seung-Ho;Lee, Je-Dong;Rhee, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.680-685
    • /
    • 2006
  • This paper describes the aeroelastic stability test of the small-scaled 'Next-Generation Blade(NRSB)' with NRSH (Next-Generation Hub System) and HCTH hingeless hub system in hover and forward flight conditions. Excitation tests of rotor system installed in GSRTS(General Small-scale Rotor Test System) at KARI(Korea Aerospace Research Institute) were tarried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. First, NRSB-1F blades with HCTH hub system, Then NRSB-1F with NRSH hub system were tested. Second, NRSB-2F blades with NRSH hub system were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Non-rotating natural frequencies, non-rotating damping ratios and rotating natural frequencies were showed similar level fir each cases. Estimated damping ratios of NRSB-1F, NRSB-2F with HCTH and NRSH were above 0.5%, and damping ratio increased by collective pitch angle increasement. Furthermore damping ratios of NRSB-2F were higher than damping ratios of NRSB-1F in high pitch angle. It was confirmed that the blade design for noise reduction would give observable improvement in aeroelastic stability compared to paddle blade and NRSB-1F design.

  • PDF

An Experimental Study of Surface Pressure on a Turbine Blade in Partial Admission (분사영역과 터빈익형 위치에 따른 표면압 변화에 관한 실험적 연구)

  • Choi, Hyoung-Jun;Park, Young-Ha;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.735-743
    • /
    • 2011
  • In this study, the distribution of surface pressure was measured in a steady state on a turbine blade which was moved the injected region and receded the stagnation region using a linear cascade apparatus. Axial-type blades were used and the blade chord was 200mm. The rectangular nozzle was applied and its size was $200mm{\times}200mm$. The experiment was done at $3{\times}10^5$ of Reynolds number based on the chord. The surface pressures on the blade were measured at three different nozzle angles of $58^{\circ}$, $65^{\circ}$ and $72^{\circ}$ for off-design performance test. In addition, three different solidities of 1.25, 1.38 and 1.67 were applied. From the results, the low solidity caused the low pressure on the blade suction surface at entering region and the reverse rotating force was generated at the low nozzle angle. The positive incidence also made the pressure lower on the suction surface at entering region.

A Study of Development of an Axial-Type Fan with an Optimization Method (최적화기법을 이용한 축류형 송풍기개발에 관한 연구)

  • Cho, Bong-Soo;Cho, Chong-Hyun;Jung, Yang-Beom;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.7-16
    • /
    • 2007
  • An axial-type fan which operates at the relative total pressure of 671Pa and static pressure of 560Pa with the flow rate of $416.6m^3/min$ is developed with an optimization technique based on the gradient method. Prior to the optimization of fan blade, a three-dimensional axial-type fan blade is designed based on the free-vortex method along the radial direction. Twelve design variables are applied to the optimization of the rotor blade, and one design variable is selected for optimizing a stator which is located behind of the rotor and is used to support a fan driving motor. The total and static pressure are applied to the restriction condition with the operating flowrate on the design point, and the efficiency is chosen as the response variable to be maximized. Through these procedures, an initial axial-fan blade designed by the free vortex method is modified to increase the efficiency with the satisfaction of the operating condition. The optimized fan is tested to compare the aerodynamic performance with an imported same class fan. The test result shows that the optimized fan operates with the satisfaction of restriction conditions, but the imported fan cannot. From the experimental and numerical test, they show that this optimization method improves the fan efficiency and operating pressures of a fan designed by the classical fan design method.

Development of Contact Pressure Analysis Model of Automobile Wiper Blades (차량용 와이퍼 블레이드의 접촉압력 해석모델 개발)

  • Lee, Sangjin;Noh, Yoojeong;Kim, Kyungnam;Kim, Keunwoo;Jang, Youngkeun;Kim, Kwanhee;Lee, Jaecheon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.292-298
    • /
    • 2015
  • A wiper is a safety device removing rain and debris from windshield and ensuring visibility of drivers. If contact pressure distribution between rubber of the blade and the windshield is unbalanced, unwanted noise, vibration, and abrasion of the blade can occur and sometimes fatal accidents could occur. To improve the safety of the wiper, there have been many researches on the contact pressure analysis of the wiper, but the analysis results were not converged or require much computational time due to material nonlinearity of the rubber and contact conditions between the blade rubber and the windshield. In this research, a simple model with 1D beam and 2D shell elements was used for the contact pressure analysis instead of the 3D blade model. The simplified model saved computational time of the analysis and resolved convergence problems. The accuracy of the analysis results was verified by comparing them with experimental results for different rail spring curvatures.

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part I. Aerodynamic Design and Analysis (차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part I. 공력 설계 및 해석)

  • Choi, Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1017-1024
    • /
    • 2012
  • The aerodynamic design and analysis on advanced propeller with blade sweep was performed for recent turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. Propeller geometry is generated by varying chord length and pitch angle at design point of target aircraft. Advanced propeller is designed by apply the modified chord length, the tip sweep which is based on the geometry of conventional propeller. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and evaluated to be properly designed.

Size determination of Ecklonia cava for successful transplantation onto artificial seaweed reef

  • Kim, Young Dae;Shim, Jung Min;Park, Mi Seon;Hong, Jung-Pyo;Yoo, Hyun Il;Min, Byung Hwa;Jin, Hyung-Joo;Yarish, Charles;Kim, Jang K.
    • ALGAE
    • /
    • v.28 no.4
    • /
    • pp.365-369
    • /
    • 2013
  • The objective of this study was to determine the optimal blade size and timing to transplant seed-stock of Ecklonia cava Kjellman onto the reef structure. We used the modified artificial stepped reef structure. A total of 14 units (3.0 m length ${\times}$ 3.5 m width ${\times}$ 1.1 m height) were deployed 7-8 m deep under the water to examine the optimal blade size and timing to transplant seed-stock of E. cava onto the structures. Sporophytes of E. cava <1 cm in length were all died within 1 month of transplantation. The blades of 5-10 cm in length which were transplanted in March 2007 survived and grew well on the artificial reefs. Growth rates of 5-10 cm size class were higher than those of longer blade sporophytes (20-30 cm size class, transplanted in April) while the survival rates showed no difference between the classes of blade size. Both classes of 5-10 and 20-30 cm in length grew until July, and a reduction in size had occurred in September. These results indicate the importance of the blade size of E. cava and timing for successful transplantation of the seaweed on artificial reef structures.

An Experimental Investigation of the Aeroelastic Stability of Next-generation Blade for Helicopter (헬리콥터용 차세대 블레이드의 공력탄성학적 안정성에 관한 시험적 연구)

  • Kim, Joune-Ho;Kim, Seung-Ho;Lee, Je-Dong;Rhee, Wook;Song, Keun-Woong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.848-856
    • /
    • 2006
  • This paper describes the aeroelastic stability test of the small-scaled 'Next-generation Blade(NRSB)' with NRSH (next-generation hub system) and HCTH hingeless hub system in hover and forward flight conditions. Excitation tests of rotor system installed in GSRTS (general small-scale rotor test system) at KARI (Korea Aerospace Research Institute) were carried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(moving block analysis) technique was used for the estimation of lead-lag damping ratio. First, NRSB-1F blades with HCTH hub system, then NRSB- 1F with NRSH hub system were tested. Second, NRSB-2F blades with NRSH hub system were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Non-rotating natural frequencies, non-rotating damping ratios and rotating natural frequencies were showed similar level for each cases. Estimated damping ratios of NRSB-1F, NRSB-2F with HCTH and NRSH were above 0.5%, and damping ratio increased by collective pitch angle increasement. Furthermore damping ratios of NRSB-2F were higher than damping ratios of NRSB-1F in high Pitch angle. It was confirmed that the blade design for noise reduction would give observable improvement in aeroelastic stability compared to paddle blade and NRSB-1F design.

Numerical Investigation of the Progressive Failure Behavior of the Composite Dovetail Specimens under a Tensile Load (인장하중을 받는 복합재료 도브테일 요소의 점진적인 파손해석)

  • Park, Shin-Mu;Noh, Hong-Kyun;Lim, Jae Hyuk;Choi, Yun-Hyuk
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.337-344
    • /
    • 2021
  • In this study, the progressive failure behavior of the composite fan blade dovetail element under tensile loading is numerically investigated through finite element(FE) simulation. The accuracy of prediction by FE simulation is verified through tensile testing. The dovetail element is one of the joints for coupling the fan blade with the disk in a turbofan engine. The dovetail element is usually made of a metal material such as titanium, but the application of composite material is being studied for weight reduction reasons. However, manufacturing defects such as drop-off ply and resin pocket inevitably occur in realizing complex shapes of the fan blade made by composite materials. To investigate the effect of these manufacturing defects on the composite fan blade dovetail element, we performed numerical simulation with FE model to compare the prediction of the FE model and the tensile test results. At this time, the cohesive zone model is used to simulate the delamination behavior. Finally, we found that FE simulation results agree with test results when considering thermal residual stress and through-thickness compression enhancement effect.