• Title/Summary/Keyword: Used Blade

Search Result 1,088, Processing Time 0.027 seconds

A Study on the Design of Throw-away Cutting Tool System for Deep Grooving or Cut-off Machining (깊은 홈 및 절단가공용 드로우어웨이식 초경공구 시스템의 설계에 관한 연구)

  • Kim, Hyeung-Chul;Lee, Woo-Young;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.123-130
    • /
    • 1996
  • The procedure on the design of a new tungsten cabide throw-away cutting tool system for deep grooving or cut-off machining is suggested. For relieving the maximum stress level at the corner radius of the blade holder, the finite element method is used. Also the pulling test device is proposed for measuring the holding force of the insert between the blade holder and the insert considering the materials in contact and configuration parameters of the holder.

  • PDF

Numerical Investigation of Aerodynamic Noise about Rotor Blade with Tab (탭이 있는 로터 블레이드의 공력소음에 대한 수치적 연구)

  • Wie, Seong-Yong;Kim, Do-Hyung;Chung, Ki-Hoon;Hwang, Changjeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.71-74
    • /
    • 2012
  • Generally, tone noise is generated at the rotary wing and helicopter. BVI(Blade-Vortex Interaction) noise is one of the helicopter's tone noise. The BVI noise is governed by tip-vortex characteristics such as vortex size, strength and trajectory. To avoid BVI, many methods have been developed and proposed. In this paper, rotating blade with active tab was numerically investigated to reduce BVI noise. For flow and noise simulation, the lifting surface approach and the acoustic analogy were used. Using numerical methods, the noise directivity and maximum noise position were predicted.

  • PDF

Warping thermal deformation constraint for optimization of a blade stiffened composite panel using GA

  • Todoroki, Akira;Ozawa, Takumi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.334-340
    • /
    • 2013
  • This paper deals with the optimization of blade stiffened composite panels. The main objective of the research is to make response surfaces for the constraints. The response surface for warping thermal deformation was previously made for a fixed dimension composite structure. In this study, the dimensions of the blade stiffener were treated as design variables. This meant that a new response surface technique was required for the constraints. For the response surfaces, the lamination parameters, linear thermal expansions and dimensions of the structures were used as variables. A genetic algorithm was adopted as an optimizer, and an optimal result, which satisfied two constraints, was obtained. As a result, a new response surface was obtained, for predicting warping thermal deformation.

능동 비틀림 제어에 용이한 블레이드의 스파형상 선정

  • Bae, Jae-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.184-190
    • /
    • 2015
  • On wide variety of fields, studies on active twist control are becoming more active. For effective twist control, blades have to have low torsional stresses with high torsional deformations to the same magnitude of torque acting on its cross-section. In this study, 2D sectional analysis and 3D finite element analysis were made for 5 different blades with each having different cross - sections which have different spars. The results from 2D sectional analysis, were then put into 3D blade deformation and stress calculations which lead to analysis. Outcomes from 2D and 3D analysis, showed that on the same torque and concentrated load conditions, the blade with 'C' shaped spar was the best of all the blades which were used in this study.

  • PDF

Stochastic Analysis of the Diamond Particle Distribution on the Surface of Circular Diamond Saw Blade (원형 다이아몬드 톱의 세그먼트 표면에서의 다이아몬드 입자 분포의 확률적인 해석)

  • 이현우;변서봉;정기정;김용석
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.201-208
    • /
    • 2003
  • Distributions of diamond particles protruding on the surface of worn diamond segments in circular saw has been investigated. Scanning electron microscope was used to examine the worn ,surface and radial saw blade wear and grinding ratio was measured. The number of protruded diamond particle was approximately 50% of the total number of particles, and that was independent of diamond particle concentration and table speed. It was also noted that the inter-particle distance did not follow a symmetric function like Gaussian distribution function, instead it fitted well with a probability density function based on gamma function. The distribution of inter-particle spacing, therefore, was analyzed using a gamma function model.

Effects of number of blades on the performance of the turbopump inducer (터보펌프용 인듀서 블레이드 수가 성능에 미치는 영향에 대한 연구)

  • Choi, Chang-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.52-57
    • /
    • 2009
  • The effects of number of blades on the hydraulic performance of the inducer were studied using a computational method. Inducers with number of blades from 2 to 4 were used for computations and the hydraulic performances of the inducers were compared. The computational results showed that the hydraulic performance decreased due to the increase of the skin friction loss at blade passages as the blade number increased. The results also showed that the strength of the backflow became weak because of the decrease of unfavorable pressure gradient as the blade number increased.

Wells Turbine for Wave Energy Conversion -Effect of Trailing Edge Shape-

  • Takasaki, Katsuya;Tsunematsu, Tomohiro;Takao, Manabu;Alam, M M Ashraful;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.307-312
    • /
    • 2016
  • The present study reported of the use of special shaped blade to reduce the difference in pressure across the Wells turbine for wave energy conversion. The blade profile was composed of NACA0020 airfoils and trailing edge was notched like chevron. Experiments were performed investigating the influence of trailing edge shape on the turbine performance. Four notch depths were used to investigate the effect of depth of cut on the turbine performance. As results, by placing a notch-cut at the trailing edge of the blade, it was possible to reduce the pressure difference across the turbine without lowering the efficiency. In addition, the pressure difference substantially reduced at a constant rate with the increase of the cut ratio.

A Study on Adjustment Optimization for Dynamic Balancing Test of Helicopter Main Rotor Blade (헬리콥터 주로터 블레이드 동적밸런싱 시험을 위한 조절변수 최적화 연구)

  • Song, KeunWoong;Choi, JongSoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.736-743
    • /
    • 2016
  • This study describes optimization methods for adjustment of helicopter main rotor tracking and balancing (RTB). RTB is a essential process for helicopter operation and maintenance. Linear and non-linear models were developed with past RTB test results for estimation of RTB adjustment. Then global and sequential optimization methods were applied to the each of models. Utilization of the individual optimization method with each model is hard to fulfill the RTB requirements because of different characteristics of each blade. Therefore an ensemble model was used to integrate every estimated adjustment result, and an adaptive method was also applied to adjustment values of the linear model to update for next estimations. The goal of this developed RTB adjustment optimization program is to achieve the requirements within 2 run. Additional tests for comparison of weight factor of the ensemble model are however necessary.

Validation of the Strain Pattern Analysis (SPA) Measuring Technique (헬리콥터 Blade의 모드해석에 적용된 응력패턴해석 계측기법의 타당성)

  • Pakshir, Nabi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.361-369
    • /
    • 1996
  • The accurate prediction of modal parameters of a rotating blade is an important requirement in the assessment of the dynamics of a helicopter rotor. Indeed, predictions of flight loads and stability are normally dependent on initially predicting the undamped mode shapes. A measuring technique, known as Strain Pattern Analysis (SPA), appears to be the most successful technique for measuring the mode shapes of rotating blades. This method was developed to be used on actual aircraft so no attempt was made to measure rotating mode shapes directly in order to validate the SPA method. This report summarizes results from experimental investigations which were carried out to validate the SPA method for the prediction of aerodynamically damped modes of a rotating blade. A series of modal tests were carried out on two rotor models in which the non-rotating, undamped and aerodynamically damped rotating modes were measured directly (strain and displacement patterns). It is shown that the SPA method to be very successful in itself but there are a number of limitations in validating this technique. To provide data which could be used to confidently validate theoretical prediction codes, existing limitations should be addressed.

  • PDF

Shape Optimization of Cut-Off in a Multi-blade Fan/Scroll System Using Neural Network (신경망 최적화 기법을 이용한 다익 홴/스크롤 시스템의 설부에 대한 형상 최적화)

  • Han, Seog-Young;Maeng, Joo-Sung;Yoo, Dal-Hyun;Jin, Kyong-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1341-1347
    • /
    • 2002
  • In order to improve efficiency of a system with three-dimensional flow characteristics, this paper presents a new method that overcomes three-dimensional effects by using two-dimensional CFD and neural network. The method was applied to shape optimization of cut-off in a multi-blade fan/scroll system. As the entrance conditions of two-dimensional CFD, the experimental values at the positions out of the inactive zone were used. The distributions of velocity and pressure obtained by two-dimensional CFD were compared with those of three-dimensional CFD and experimental results. It was found that the distributions of velocity and pressure have qualitative similarity. The results of two-dimensional CFD were used for teaming as target values of neural network. The optimal angle and radius of cut-off were determined as 71$^{\circ}$and 0.092 times the outer diameter of impeller, respectively. It is quantified in the previous report that the optimal angle and radius of cut-off are approximately 72$^{\circ}$and 0.08 times the outer diameter of impeller, respectively.